• 제목/요약/키워드: soil remediation technology

검색결과 238건 처리시간 0.024초

순수 분리 미생물을 이용한 오염 토양에서의 BTEX 생분해 특성과 미생물 군집 변화 (BTEX Biodegradation in Contaminated Soil Samples Using Pure Isolates and Changes in the Mixed Microbial Community Structure)

  • 정경미;최용수;홍석원;이수진;이상협
    • 대한환경공학회지
    • /
    • 제28권7호
    • /
    • pp.757-763
    • /
    • 2006
  • 본 연구에서는 BTEX로 오염된 저질로부터 순수 분리한 BTEX를 탄소원으로 $NO_3$-N를 전자수용체로 이용하는 미생물의 오염토양에 대한 현장 적용 가능성을 평가하였다. 이와 함께 주입한 순수 분리 미생물과 토착 미생물과의 상호 관계를 관찰하기 위하여 시간 경과에 따른 오염된 토양에서의 미생물 군집 변화도 관찰하였다. 이를 위해 BTEX로 오염 가능성이 적은 지역으로부터 채취한 토양 시료 100 g에 benzene, toluene, ethylbenzene, o-xylene을 각각 일정량 주입한 후, 동정 분리한 Pseudomonas stutzeri strain 15(DQ 202712):Klebsiella sp. strain 20(DQ 202715):Citrobacter sp. strain A(DQ 202713)를 2;1:1의 비율로 주입하여 BTEX 분해 효율과 미생물 군집 변화를 관찰하였다. 실험결과, $NO_3$-N와 BTEX가 모두 존재하는 조건에서 동정 분리한 미생물에 의한 분해 효율이 가장 높게 관찰되었다. 그리고 PCR-DGGE를 통한 미생물 군집 변화 관찰 결과, 토양 내 존재하는 다양한 미생물들의 peak는 대부분 감소된 반면, 주입한 동정분리 미생물 peak는 증가되는 것을 관찰할 수 있었다. 그러나 주입한 미생물 3종 가운데 Pseudomona stutzeri만이 우점화 된 결과가 관찰되었다.

Blasting에 의한 철도오염자갈의 재활용 연구 (Remediation of Contaminated Ballast Gravels by Blasting Technology)

  • 조영민;박덕신;최윤;임종일;이경환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.597-603
    • /
    • 2005
  • The remediation of railroad contaminated soil is gaining wide attention, recently. In railroad field, modification of diesel supply field, equipment of roll pad, FRP panel, and iron pannel under diesel locomotive storages are used for the prevention of contamination expansions. However, cheap and efficient remediation technology has not been suggested yet. In this study, the contaminated ballast was remediated by blasting technology. Because the contaminants mainly resides on the surface of ballast, blasting these contaminants make it available to recycle the ballast. We carried out the remediation of oil-contaminated ballasts using the blasting technology, and we could remediate them nicely. This technology is expected to be used for the cheap and quick remediation of contaminated ballast.

  • PDF

유류오염토양의 정화기술과 적용사례 (Remediation Technology and application case of petroleum hydrocarbon contaminated soil)

  • 이철효
    • 기술사
    • /
    • 제41권3호
    • /
    • pp.35-39
    • /
    • 2008
  • The most common soil contaminants are petroleum-based. Hydrocarbons from diesel fuel and gasoline are widespread problems, as are total petroleum hydrocarbon(TPH). There are two distinct classes of soil remediation: in-situ, or on-site, and ex-situ, or off- site. On-site cleanups are often preferred because they are cheaper. On the other hand, excavating a contaminated area and transporting it to a remote site before cleaning it can often be more complete. Ex-situ remediation also has the added bonus of taking the bulk of contaminants off-site before they can spread further. In addition, in-situ situations are limited because only the topside of the soil is accessible.

  • PDF

Removal of heavy metal and organic matter by electrokinetic ultrasonic remediation technology

  • Chung, Ha-Ik;Oh, In-Kyu
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.210-214
    • /
    • 2002
  • In this study, the coupled effect of electrokinetic and ultrasonic remediation technology was investigated for removing of heavy metal and organic matter at the same time. The laboratory tests were conducted using specially designed and fabricated electrokinetic and ultrasonic devices. The electrokinetic technique was applied to remove mainly the heavy metal and the ultrasonic technique was applied to remove mainly organic substance in contaminated soil. Diesel fuel and Cd were used as a surrogate contaminant for this test. A series of laboratory experiments involving electrokinetic and electrokinetic+ultrasonic flushing test were carried out. An increase in permeability and contaminant removal rate was observed in electrokinetic+ultrasonic flushing test.

  • PDF

폐기물을 활용한 저투수성 오염토양의 정화 및 안정화 기술 개발 (Development of Remediation and Stabilization Technique for Low-Permeable Contaminated Soil Using Waste Materials)

  • 박상규;이기호;박준범
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.681-688
    • /
    • 2002
  • Study was peformed to develop the‘environmental double pile’for the remediation of low-permeable contaminated soil. This technique is similar in function to‘sand drain pile’But this applies recyclable oyster shell treated as waste materials to a drain material and the pile is consisted of two layers. Inner metal pile is located in center and oyster shells are filled around it. By this technology, contaminated ground water is pumped out through the oyster shell and purified by drainage, adsorption, and reaction processes. Afterwards, the grout material is injected through the inner pile for the effect of the solidification / stabilization. As a result, the concept of this technique is a development of one-step process technology. Through the test, a consolidation characteristic by radial drain is going to be evaluated and the optimum standard of this technology will be calculated.

  • PDF

Verification of Heme Catalytic Cycle with 5-Aminosalicylic Acid and Its Application to Soil Remediation of Polycyclic Aromatic Hydrocarbons

  • Chung, Namhyun;Park, Kapsung;Stevens, David K.;Kang, Guyoung
    • Environmental Engineering Research
    • /
    • 제19권2호
    • /
    • pp.139-143
    • /
    • 2014
  • Catalytic degradation of pentachlorophenol in soil by heme and hydrogen peroxide has been hypothesized to occur through nonspecific catalytic reactions similar to those involving ligninase. The present study examines the evidence for a heme catalytic mechanism for the oxidation of organic compounds. In the presence of hydrogen peroxide, heme is converted to the ferryl heme radical (Hm-$Fe^{+4{\cdot}}$), which can oxidize organic compounds, such as 5-aminosalicylic acid (5-ASA). A second 5-ASA may later be oxidized by ferryl heme (Hm-$Fe^{+4}$), which reverts to the ferric heme state (Hm-$Fe^{+3}$) to complete the cycle. We believe that this catalytic cycle is involved in the degradation of hazardous pollutants, such as polycyclic aromatic hydrocarbons (PAHs). Remediation via heme catalytic reactions of PAHs in soil from a pole yard was evaluated, and about 96% of PAHs was found to disappear within 42 days after treatment with heme and hydrogen peroxide. In addition, benzo[a]pyrene and six other PAHs were undetectable among a total of 16 PAH compounds examined. Therefore, we propose heme catalysis as a novel technology for the remediation of hazardous compounds in contaminated soil.

유류오염 토양-지하수 복원기술: 문제와 개선방향

  • 이석영;윤준기;이채영;김길홍;신언빈;조정숙
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.3-10
    • /
    • 2003
  • Soil and groundwater contamination by petroleum hydrocarbon products is only one of many environmental problems in Korea. However, many environmental consulting companies have been targeted their business on this subject because the petroleum-oil-lubricant (POL) products have been widely used product and accidental releases of the products from storages resulted numerous small and large contaminated sites throughout Korea. Therefore, many small and large companies are actively participating in environmental assessment and remediation projects for the POL contaminated sites. Remedial technologies for the POL contaminated sites have been developed for many years by government and private institutions throughout the world. Development of a new decontamination technology for the POL contaminated sites is no longer attractive issue in research community because scientific bases of most cost-effective remedial technologies are well understood and have been used in the field by commercial sector. Numerous sites contaminated by underground tanks at gas stations have been remediated by relatively small companies in this country. We should appreciate their noticeable contributions as a frontier under very difficult market environment in Korea. We heard many successful stories as well as a few failure stories. Soil-groundwater remediation of POL contaminated site is not a simple task as shown in the text books or protocols. Therefore, failure risk is always with us, which requires continuous efforts for improvement of the technologies by the users and developers. In this presentation, author will discuss technical problems encountered and improvement made during implementation of several remedial technologies applied by Samsung Environmental Team. This is not a presentation about research or case study. We want to share our thought and experience with environmental engineers actively engaged in soil and groundwater remediation projects in Korea.

  • PDF

Cu, Pb, As 복합 중금속오염 토양의 전기동력학적 정화에서 전해질의 영향 평가 (Evaluation of Processing Fluids on Electrokinetic remediation of Cu, Pb, As-contaminated soil)

  • 박근용;김도형;백기태
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권5호
    • /
    • pp.1-7
    • /
    • 2010
  • Electrokinetic technology was applied to remediate Cu, Pb and As-contaminated paddy soil. Removal of metal is highly dependent on the processing fluid during electrokinetic treatment. Tap water, NaOH, $HNO_3$, $Na_2EDTA$, and citric acid were evaluated as the processing fluids to enhance metal removal. Cu and Pb were transported toward cathode, however, it did not removed from soil section, while 56.6% of As was removed at a acidic condition. The strong acidic condition with nitric acid as a processing fluid enhanced the desoprtion of As from soil surface. However, longer operation time is needed to get the higher removal of Cu and Pb, and the acidification of soil after electrokinetic treatment should be solved.

유류오염토양 복원을 위한 설계인자 선정에 관한 연구

  • 조장환;전권호;서창일;박정구
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.293-296
    • /
    • 2004
  • The objective of this study was to decide the designing factor for remediaton of the contaminated site. The soil and ground-water samples were analyzed and hydro- geological characteristics was assayed for the survey of pollution level. Also air-permeability test and MPN(most probable number) test were conducted for selecting the designing factor. The contaminants were mainly found in north-west part of the site and were expected to move toward the south. Ex-situ technology was expected more useful than in-situ one with the results of air-permeability test saying that air permeability was relatively low. Additional microbes were expected for remediation efficiency because residual microbes were loosely populated. The choosing of the designing factor was requisite for remediation of contaminated site.

  • PDF