• 제목/요약/키워드: soil porosity

검색결과 368건 처리시간 0.026초

Applicability of Relative Effective Porosity Model to Tracer Tests

  • Hwang, Hyeon-Tae;Lee, Gang-Geun;Suleiman, A.A.
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.341-345
    • /
    • 2004
  • An attempt has been made in this study to evaluate an applicability of Relative Effective Porosity Model (REPM) as a method for estimating saturated hydraulic conductivity (K$_{s}$) for homogeneous coarse, medium, and fine sands. The saturated hydraulic conductivities obtained from REPM are converted into average linear velocities using Darcy's Law and compared with the results from experimental tracer tests for homogeneous coarse, medium, and fine sand layer. Two types of tracer tests analyses, analytical solution using CXTFIT and moment methods, are performed to obtain reasonable linear velocity range for each layer. For the coarse and medium sands, the converted average linear velocity from REPM is in the velocity range obtained from tracer tests. However, small difference between the results from REPM and tracer tests is found for the fine sands. These results show that REPM gives reasonable estimates of saturated hydraulic conductivity.y.

  • PDF

Biobarrier를 이용한 유기오염물질의 생물학적분해모의를 위한 수치모델개발

  • 왕수균
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.137-140
    • /
    • 2003
  • This study presents a mathematical model for simulating the fate and transport of a reactive organic contaminant degraded through cometabolism in dual-porosity soils during the in situ bioaugmentations. To investigate the effect of dual-porosity on transport and biodegradation of organic hydrocarbons, a bimodal approach was incorporated into the model. Modified Monod kinetics and a microcolony concept [Molz et at., 1986〕 were employed to represent the effects of biodegrading microbes on the transport and biodegradation of an organic contaminant. The effect of permeability reduction due to biomass accumulation on the flow field were examined in the simulation of a hypothetical field-scale in situ bioaugmentation. Simulation results indicate that the presence of the immobile region can decrease the bioavailablity of biodegradable contaminants and that the placement of microbes and nutrients injection wells should be considered for an effective in situ bioaugmentation scheme.

  • PDF

유전율에 의한 지반 매질내 유류침투거동 분석 (Evaluation of Oil Infiltration Behavior in Porous Media Using Dielectric Response)

  • 김만일;정교철
    • 지질공학
    • /
    • 제15권1호
    • /
    • pp.29-39
    • /
    • 2005
  • 지반오염을 조사하기 위해서는 시추작업을 통하여 시료를 채취하는 방법이 일반적이지만, 실시간으로 원위치에서 다양한 오염물질들의 오염 도 변화를 체계적으로 모니터링 하는 것은 대단히 어렵다. 본 연구에서는 frequency Domain Reflectometry (FDR) 장비를 고안하여 지반의 유류오염을 파악하기 위한 유전율 측정법의 실험적 접근을 시도하였다. 구체적으로 포화 및 불포화 매질에 대한 유류 오염도 측정 및 체적함수비 (θ/sub w/)와 체적 유류비 ( θ/sub al/)의 관계에서 유전율 상수 반응에 따른 매질의 유류 오염도 등의 측정 가능성을 실내 시험을 통해 검토하였다. 뿐만 아니라 실내 칼럼 시험을 수행하여 포화 매질 내에서 유류 거동 특성을 각기 설치된 FDR 측정 센서를 이용해 모니터링하여 포화 매질의 유효공극률과 유류 잔류비를 측정하였다. 그 결과 초기 공극률 0.40으로 제작된 포화 매질의 유효공극률은 약 0.35로 공극률 대비 약 87.5% 범위내에 존재함을 알 수 있었으며, 유류 잔류비는 약 62.5% 정도로 매우 높게 나타났다.

Decision of Available Soil Depth Based on Physical and Hydraulic Properties of Soils for Landscape Vegetation in Incheon International Airport

  • Jung, Yeong-Sang;Lee, Hyun-Il;Jung, Mun-Ho;Lee, Jeong-Ho;Kim, Jeong-Tae;Yang, Jae E
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.522-527
    • /
    • 2015
  • Decision of available soil depth based on soil physical and hydraulic properties for the $3^{rd}$ Landscape Vegetation Project in the Incheon International Airport was attempted. The soil samples were collected from the 8 sites at different depths, 0-20 and 20-60cm, for the three project fields, A, B, and C area. Physical and chemical properties including particle size distribution, organic matter content and electrical conductivity were analyzed. Hydrological properties including bulk density and water holding capacity at different water potential, -6 kPa, -10 kPa, -33 kPa, and -1500 kPa were calculated by SPAW model of Saxton and Rawls (2006), and air entry value was calculated by Campbell model (1985). Based on physical and hydrological limitation, feasibility and design criteria of soil depth for vegetation and landfill were recommended. Since the soil salinity of the soil in area A area was $19.18dS\;m^{-1}$ in top soil and $22.27dS\;m^{-1}$ in deep soil, respectively, landscape vegetation without amendment would not be possible on this area. Available soil depth required for vegetation was 2.51 m that would secure root zone water holding capacity, capillary fringe, and porosity. Available soil depth required for landscape vegetation of the B area soil was 1.51 m including capillary fringe 0.14 m and available depth for 10% porosity 1.35 m. The soils in this area were feasible for landscape vegetation. The soil in area C was feasible for bottom fill purpose only due to low water holding capacity.

Threshold Subsoil Bulk Density for Optimal Soil Physical Quality in Upland: Inferred Through Parameter Interactions and Crop Growth Inhibition

  • Cho, Hee-Rae;Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Sonn, Yeon-Kyu;Kim, Myeong-Sook;Choi, Seyeong
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.548-554
    • /
    • 2016
  • Optimal range of soil physical quality to enhance crop productivity or to improve environmental health is still in dispute for the upland soil. We hypothesized that the optimal range might be established by comparing soil physical parameters and their interactions inhibiting crop growth. The parameter identifying optimal range covered favorable conditions of aeration, permeability and root extension. To establish soil physical standard two experiments were conducted as follows; 1) investigating interactions of bulk density and aeration porosity in the laboratory test and 2) determining effects of soil compaction and deep & conventional tillage on physical properties and crop growth in the field test. The crops were Perilla frutescens, Zea mays L., Solanum tuberosum L. and Secale cereael. The saturated hydraulic conductivity, bulk density from the root depth, root growth and stem length were obtained. Higher bulk density showed lower aeration porosity and hydraulic conductivity, and finer texture had lower threshold bulk density at 10% aeration bulk density. Reduced crop growth by subsoil compaction was higher in silt clay loam compared to other textures. Loam soil had better physical improvement in deep rotary tillage plot. Combined with results of the present studies, the soil physical quality was possibly assessed by bulk density index. Threshold subsoil bulk density as the upper value were $1.55Mg\;m^{-3}$ in sandy loam, $1.50Mg\;m^{-3}$ in loam and $1.45Mg\;m^{-3}$ in silty clay loam for optimal soil physical quality in upland.

Impact of Biochar Particle Shape and Size on Saturated Hydraulic Properties of Soil

  • Lim, Tae-Jun;Spokas, Kurt
    • 한국환경농학회지
    • /
    • 제37권1호
    • /
    • pp.1-8
    • /
    • 2018
  • BACKGROUND: Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool evaluating the impact of the shape and the size distribution of biochar on soil saturated hydraulic conductivity ($K_{sat}$). METHODS AND RESULTS: Plastic beads of different size and morphology were compared with biochar to assess impacts on soil $K_{sat}$. Bead and biochar were added at the rate of 5% (v/w) to coarse sand. The particle size of bead and biochar had an effect on the $K_{sat}$, with larger and smaller particle sizes than the original sand grain (0.5 mm) decreasing the $K_{sat}$ value. The equivalent size bead or biochar to the sand grains had no impact on $K_{sat}$. The amendment shape also influenced soil hydraulic properties, but only when the particle size was between 3-6 mm. Intra-particle porosity had no significant influence on the $K_{sat}$ due to its small pore size and increased tortuosity compared to the inter-particle spaces (macro-porosity). CONCLUSION: The results supported the conclusion that both particle size and shape of the amended biochar impacted the $K_{sat}$ value.

골프장 답압지역의 토양개량 (Effect of Soil Amendments at Heavy Traffic Area in Golf Course)

  • 태현숙;김용선;고석구
    • 한국조경학회지
    • /
    • 제27권5호
    • /
    • pp.107-113
    • /
    • 2000
  • The purpose of this study is to investigate the effects of soil amendments for reducing soil compaction at heavy traffic area in golf course. Major results of this research are summarized at follows: 1. In the Lab. experiment, the porosity was improved significantly when the materials, such as peatmoss, charcoal, and tire chip mixtures were used respectively. Especially mixture of sand and 20% peatmoss showed higher effectiveness (10%) in porosity, comparing with ordinary sand. This soil mixture(sand 80%+peatmoss 20%) was observed the best in water retention, soil hardness and hydrauric conductivity. 2. In the greenhouse experiment, traffic pressure was given 7 times a day on several combination of mixture treatments to see the top dry weight. The soil mixture of 20% peatmoss showed the highest in the top dry weight. When the more traffic pressure(15 time/day) were given on the different treatment, the top dry weight was significantly reduced. However, the mixture of 20% peatmoss also had the least influence on this type of heavy traffic. 3. In the field experiment, the soil amendments were treated in traffic area f golf course, and observed at 30days, 60days, 90days, 120days after treatment. Visual turf quality(color), root length and soil compaction were compared to those of control. As a result, overall treatments with soil amendments were effective, which showed better turf quality and less soil compaction. 4. In the field test, physical characters of soil (such as soil hardness and hydrauric conductivity) in sand+tire chip+peatmoss(60:20:20, %, v/v) treatment was significantly improved. Also in the slow increasing of traffic, the soil compaction was the most effective in reducing soil hardness.

  • PDF

토양 및 오염물질의 물성치가 연직배수재에 의한 현장오염정화에 미치는 영향에 대한 수치해석적 연구 (Numerical Analysis of Effects of the Physical Properties of Soil and Contaminant Materials on In-situ Soil Remediation Using Vertical Drain)

  • 이행우;장병욱
    • 한국지반신소재학회논문집
    • /
    • 제5권2호
    • /
    • pp.1-8
    • /
    • 2006
  • 오염토양의 현장정화에 있어서 지반 및 오염물질의 물성치는 정화에 소요되는 시간과 함께 매우 중요한 고려사항이다. Gabr 등(1996)은 연직배수재가 설치된 오염지반에서 시 공간적 변화에 따른 초기오염농도에 대한 오염농도비($C/C_0$)를 구하는 식을 유도하였다. 본 연구에서는 Gabr 등이 유도한 식의 전산모형 FLUSH1을 이용하여 오염지반 흙의 유효입경, 간극률, 형상계수, 밀도, 지반의 온도와 오염물질의 단위중량 및 점성계수가 오염정화에 미치는 영향을 알아보기 위하여 시 공간적 변화에 따른 오염농도비($C/C_0$)를 분석 하였다. 분석결과 연직배수재가 설치된 오염지반에서 정화에 크게 영향을 미치는 인자는 오염지반 흙입자의 유효입경인 것으로 나타났으며, 그 다음으로 오염물질의 점성, 오염지반 흙의 간극율, 형상계수, 지반의 온도, 오염물질의 단위중량, 흙의 밀도 순으로 분석되었다. 오염지반 흙의 밀도는 오염정화에 미치는 영향이 아주 작은 것으로 나타났다.

  • PDF

산림환경 변화가 토양내 수저유능력과 유출에 미치는 영향 (Effect of change in forest environment on water storage capacity in soil and streamflow)

  • 남이;박승기
    • 한국토양환경학회지
    • /
    • 제2권2호
    • /
    • pp.35-51
    • /
    • 1997
  • 강원도 평창군 연평면과 용평면 일원에 위치한 백옥포유역과 이목정유역에서 산림의 환경변화(임상차이 및 피해목 벌채)가유출과토양내 수저유능력에 미치는 영향을 구명하기 위하여 1983∼1993년의 유출량, 유출률, 유황곡선등을 분석하였다. 또한 유출 구성성분중 총유출량, 직접유출량, 토양내 가비중, 전공극량, 조공극, 세공극, 투수성, 유출가능수량을 분석하였다. 유출을, 유출량, 유황곡선은 임상이 불량한 이목정유역이 임상이 양호한 백옥포유역보다 높게 나타났으며, 두시험유역 모두에서 전처리기간이 처리기간보다 낮게 나타났다. 또한 벌채에 의한 산림환경변화에 따라 융설촉진 현상이 처리기간에 크게 일어났으며, 융설지연 현상으로 인한 산림효과가 전처리기간에 나타났다 산림환경변화에 따른 토양의 물리적 성질중 가비중, 전공극량(조공극, 세공극), 투수성, 유출가능수량에서도 백옥포유역이 이목정유역보다 양호하였으며, 두 시험유역 모두에서 전처리기간이 처리기간보다 양호한 결과를 나타내어 산림환경 변화에 따른 수자원함양기능의 중요성을 제시하였다.

  • PDF

용기내 충전량 변화에 따른 코이어 더스트 혼합상토의 물리성 변화 (Changes in soil physical properties of coir dust-mixed substrate as influenced by various filling amounts)

  • 최종명;이희수
    • 농업과학연구
    • /
    • 제40권3호
    • /
    • pp.203-208
    • /
    • 2013
  • Differences in the filling amount of substrates in container can influence severely on the soil physical properties and crop growth. This research was conducted to secure the fundamental informations related to the changes in soil physical properties as influenced by the filling amount of coir dust-based substrates in container. For the experiment, three substrates were formulated by blending coir dust (CD) with expanded rice hull (CD+ERH, 8:2, v/v), carbonized rice hull (CD+CRH, 6:4, v/v) or ground and aged pine bark (CD+GAPB, 8:2, v/v). Based on the optimum bulk density, the amount of substrates filled in 347.5mL aluminum cylinder were adjusted to 90, 100, 110, 120, and 130%. Then the changes in total porosity (TP), container capacity (CC), and air-filled porosity (AFP) by various filling amounts were measured. The TP decreased linearly in CD+ERH and CD+GAPB and quadratically in CD+CRH as the filling amounts of the media increased from 90% to 130%. The CC in CD+ERH and CD+GAPB media increased as the filling amount increased from 90% to 120%, then decreased in 130%, showing quadratic change. The CC in CD+CRH was the highest in 90% filling amount and decreased gradually as the filling amount of root medea increased. The AFPs in CD+ERH and CD+GAPB media were 38 and 37%, respectively in 90% filling amount and they decreased drastically until 110% filling, then gradually in 120 and 130% filling amount showing the quadratic changes. The AFP of CD+CRH at 90% filling amount was 22% and it decreased as the filling amount increased until 130%, showing linear change. These results indicate that the increase in filling amount of substrates influenced more severely the AFP than CC, and careful consideration on container filling is required to provide a better root condition thus maximize crop growth.