• Title/Summary/Keyword: soil plasticity

Search Result 158, Processing Time 0.019 seconds

Characteristics of Load-Settlement Behaviour for Embeded Piles Using Load-Transfer Mechanism (하중전이기법을 이용한 매입말뚝의 하중-침하 거동특성)

  • Oh, Se Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.51-61
    • /
    • 2001
  • A series of model tests and analyses by load transfer function were performed to study load-settlement behaviour with relative compaction ratio of soil and embeded depth of pile. In the model tests, embeded depth ratio(L/D) of pile were installed 15, 20, 25 and relative compaction of soil(RC) is 85%, 95% and then cement were injected at around perimeter of pile. For analysis of embedded pile, the paper were compared results of model tests with analysis results by Vijayvergiya model and Castelli model, Gwizdala model of elastic plasticity-perfect plastic model and then the fitness load transfer mechanism was proposed to predict load-settlement behaviour of embeded pile. The analysis results of predicted bearing capacity by load transfer function, ultimate bearing capacity of embeded pile were approached to measured value and behaviour of initial load-settlement curve were estimated that load transfer function by Castelli were similar to measured value. The result of axial load analysis of bored pile shows that skin friction estimated by load transfer mechanism is investigated more a little than that of measured values.

  • PDF

A Study on the Determination of Bearing Capacity of Polluted Soils with Various Concentrations (농도가 다른 오염지반의 지지력 결정에 관한 연구)

  • 안종필;박상범
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.57-69
    • /
    • 1999
  • This study investigates the existing theoretical backgrounds for bearing capacity determination according to the plasticity of soils when unsymmetrical surcharge is loaded on polluted soft soils. It also investigates the behavior of the displacement and bearing capacity by unsymmetrical surcharge on the Polluted soft soils. by comparing the analytical results and the actual measurements performed through the model test. Model tests were carried out as follows : soil tank, bearing frame and bearing plate are made for the test ; the water content in soil tank was kept constant while the contaminants in natural soils and polluted material were gradually increased ; unsymmetrical surcharge is increased at regular intervals and then the amounts of settlement, lateral displacement and upheaval are observed. In conclusion, the value of critical surcharge was expressed as $q_{ cr}= 2.78_{Cu}$ which was similar to those $Tschebotarioff(q_{cr}=3.0_{Cu)$ and $Meyerhof(q_{cr}=(B/2H+\pi/2_{Cu})$ had proposed. The value of ultimate capacity was expressed as $q_{ult}=4.84_{Cu}$ which was similar to that of Prandtl.

  • PDF

Finite element analysis of a CFRP reinforced retaining wall

  • Ouria, Ahad;Toufigh, Vahab;Desai, Chandrakant;Toufigh, Vahid;Saadatmanesh, Hamid
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.757-774
    • /
    • 2016
  • Soils are usually weak in tension therefore different materials such as geosynthetics are used to address this inadequacy. Worldwide annual consumption of geosynthetics is close to $1000million\;m^2$, and the value of these materials is probably close to US$1500 million. Since the total cost of the construction is at least four or five times the cost of the geosynthetic itself, the impact of these materials on civil engineering construction is very large indeed. Nevertheless, there are several significant problems associated with geosynthetics, such as creep, low modulus of elasticity, and susceptibility to aggressive environment. Carbon fiber reinforced polymer (CFRP) was introduced over two decades ago in the field of structural engineering that can also be used in geotechnical engineering. CFRP has all the benefits associated with geosynthetics and it boasts higher strength, higher modulus, no significant creep and reliability in aggressive environments. In this paper, the performance of a CFRP reinforced retaining wall is investigated using the finite element method. Since the characterization of behavior of soils and interfaces are vital for reliable prediction from the numerical model, soil and interface properties are obtained from comprehensive laboratory tests. Based on the laboratory results for CFRP, backfill soil, and interface data, the finite element model is used to study the behavior of a CFRP reinforced wall. The finite element model was verified based on the results of filed measurements for a reference wall. Then the reference wall simulated by CFRP reinforcements and the results. The results of this investigations showed that the safety factor of CFRP reinforced wall is more and its deformations is less than those for a retaining wall reinforced with ordinary geosynthetics while their construction costs are in similar range.

Stress-Strain-Strength Characteristics of Frozen Sands with Various Fine Contents (세립분 함유량에 따른 동결 사질토의 응력-변형률-강도 특성)

  • Chae, Deokho;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.31-38
    • /
    • 2015
  • Recently, the participation on the development of the natural gas pipeline in Russia as well as the recent construction of the second Korean Antarctic research station, the Jangbogo station provide the research interests on the behavior of the permafrost ground. To investigate the effect of fines on the mechanical responses of frozen sands, unconfined compression tests were performed on the frozen sands with 0, 5, 10 and 15% of fine contents at -5, -10 and $-15^{\circ}C$. The poorly graded (SP) Joomunjin sand and kaolinite, silt with low plasticity (ML) were used for the preparation of the frozen soil specimens. The mechanical responses of the tested soils were investigated via unconfined compression tests in the temperature controlled laboratory and analyzed in terms of peak unconfined compressive strength and secant modulus at 50% of the peak strength. As the fine contents increase, the unfrozen water contents increase and thus the strength and stiffness of frozen soils decrease. The increment of the stiffness and strength due to the temperature decrease vary with the fine contents.

Investigation of effects of twin excavations effects on stability of a 20-storey building in sand: 3D finite element approach

  • Hemu Karira;Dildar Ali Mangnejo;Aneel Kumar;Tauha Hussain Ali;Syed Naveed Raza Shah
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.427-443
    • /
    • 2023
  • Across the globe, rapid urbanization demands the construction of basements for car parking and sub way station within the vicinity of high-rise buildings supported on piled raft foundations. As a consequence, ground movements caused by such excavations could interfere with the serviceability of the building and the piled raft as well. Hence, the prediction of the building responses to the adjacent excavations is of utmost importance. This study used three-dimensional numerical modelling to capture the effects of twin excavations (final depth of each excavation, He=24 m) on a 20-storey building resting on (4×4) piled raft. Because the considered structure, pile foundation, and soil deposit are three-dimensional in nature, the adopted three-dimensional numerical modelling can provide a more realistic simulation to capture responses of the system. The hypoplastic constitutive model was used to capture soil behaviour. The concrete damaged plasticity (CDP) model was used to capture the cracking behaviour in the concrete beams, columns and piles. The computed results revealed that the first excavation- induced substantial differential settlement (i.e., tilting) in the adjacent high-rise building while second excavation caused the building tilt back with smaller rate. As a result, the building remains tilted towards the first excavation with final value of tilting of 0.28%. Consequently, the most severe tensile cracking damage at the bottom of two middle columns. At the end of twin excavations, the building load resisted by the raft reduced to half of that the load before the excavations. The reduced load transferred to the piles resulting in increment of the axial load along the entire length of piles.

Archaeomagnetic Study on Roof Tile Kilns of Goryeo Period in Gyeonggi Region (경기지역 고려시대 기와가마에 대한 고고지자기학적 연구)

  • Sung, Hyong Mi
    • Journal of Conservation Science
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • At the archaeological site, there are a variety of fired soil remains with which archaeomagnetic dating is measured, and there are also different kinds of kilns equipped with favorable plasticity conditions, so quality data can be gained. Among them, roof tile kilns indicate fairly great results of archaeomagnetic measuring. This should be associated with the properties of soil consisting of the kilns. With a lot of experimental results, it has been found that the fired soil samples of roof tile kilns have formed very stable residual magnetization. This author conducted archaeomagnetic research to present archaeomagnetic results of measuring about roof tile kilns from Goryeo in Gyeonggi. With the archaeomagnetic data of measuring 21 samples, this researcher tried to estimate the archaeomagnetic dating of roof tile kilns from Goryeo in Gyeonggi and divided them into three groups, group A (A.D.900~1150), group B (A.D.1150~1250), and group C (A.D.1300~1400) to figure out their relative order and arrange them in order. Through this kind of archaeomagnetic research, it will be possible to identify the dating of 21 roof tile kilns from Goryeo in Gyeonggi and also contribute considerably to chronological research on roof tile kilns from Goryeo. In the body, the remains and kilns belonging to each group are presented in detail.

An Anisotropic Hardening Elasto-Plastic Constitutive Model for the Behavior at Small-to-Large Strain Conditions (미소변형률 및 대변형률 조건의 거동에 대한 비등방경화 탄소성 구성모델)

  • 오세붕;권기철;정순용;김동수
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.65-73
    • /
    • 2000
  • An elasto-plastic constitutive model was proposed, in which the behavior at small-to-large strain level can be modeled. The proposed model is based on the anisotropic hardening description with the generalization of isotropic hardening rule and the total stress concept. From a mathematical approach it was proved that the model includes the previous successful models. The model was verified by a series of resonant column tests, torsional shear tests and triaxial tests, and the proposed model predicted small-to-large strain behavior more consistently and accurately than the hyperbolic model and the Ramberg-Osgood model for a weathered granitic soil. In addition, the nonlinearity under small strain condition was predicted appropriately for the torsional shear test results.

  • PDF

Undrained Behaviour of Normally Consolidated Clay Foundation Using Single-Hardening Constitutive Model (단일황복면 구성모델을 이용한 정규압밀 점토지반의 비배수 거동해석)

  • Jeong, Jin Seob;Lee, Kang Ill;Park, Byung Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1229-1241
    • /
    • 1994
  • This study aims at investigating the undrained behavior of the normally consolidated clay foundation using single hardening constitutive model based on elasticity and plasticity theories. The specimen employed was sampled at Mooan near the down stream of Young San river and remolded into consolidation apparatus. 11 soil parameters for the model was determined from simple tests such as isotropic compression and consolidation undrained triaxial compression tests. FEM program to predict the undrained behavior of the foundation was developed and back analysis was performed to verify prediction ability of the FEM program. Finally plate load test on the 2-dimensional model foundation was carried out in order to compare numerical analysis and observed values on the foundation.

  • PDF

Electrokinetic Removal and Removal Characteristics of Heavy Metals from Metal-Mining Deposit (동전기법에 의한 광산퇴적토의 중금속 제거 특성)

  • Lee, Chang-Eun;Shin, Hyun-Moo
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.227-236
    • /
    • 2003
  • Electrokinetic remediation technique offers the opportunity to extract heavy metals from soils with high plasticity. The experiment demonstrated the applicability of electrokinetic remediation on metal-mining deposit and the decision of the enhancement method for four kinds of bench-scale studies. According to the sequential extraction of heavy metals in the "I" mining deposit, Pb and Cu were mostly associated with residual fraction and Zn and Cd were associated with water soluble and residual fraction. Therefore, removable fractions by electrokinetic technology was determined by the sum of the fraction of water soluble and exchangeable, which is Cu : 19.53%, Pb : 1.42%, Cd : 52.82%, Zn : 57.28%, respectively. When considering electrical potential, volume of effluent, soil pH, and eliminated rate of contaminant, results determined by sum of each weight were Citric aic+SDS (13) > 0.1N $HNO_3$ (10) > HAc (8) > DDW (4). Therefore, citric acid and SDS mixed solution was determined the best enhancing agent for the remediation of metal mining deposit.g deposit.

Parameter Evaluation of a Smooth Elasto-plastic Cap Model (연속탄소성 캡 모델의 정수 산정)

  • Seo, Young-Kyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.125-130
    • /
    • 2004
  • In this paper, the method of parameter estimation of a mathematical constitutive model blown as the smooth elasto-plastic cap model is studied. To predict the response of the real soil using this model, the eight parameters describing the constitutive equations have to be determined. First, experimental data are obtained from simple laboratory experiments such as one dimensional confined compression test in a consolidometer and drained triaxial compression test with the Ottawa sand f3r the reference value. Then, the numerical experiments are performed in the cap model with initial guessed parameters. The optimization method is utilized to fit the model response to experimental data by minimizing the error between the laboratory and numerical responses. Special attention is given to the parameter estimation procedure of numerical triaxial test due to the difficulty of the lateral strain measurements.