• Title/Summary/Keyword: soil organic matter

Search Result 1,839, Processing Time 0.027 seconds

Effect of Soil Organic Matter Content and Nutrition Elements on Yield of Potato

  • Park, Young-Bae;Noh, Jae-Seung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.303-305
    • /
    • 2011
  • A study of different levels of Nutrition Elements and the chemical properties of the soil was conducted to determine the yield performance of potato. Application of sulfur, potassium, and Magnesium significantly affected final height, dry matter content, and crispiness of potato. The final pH, organo-nitrogen, phosphorus, potassium, and magnesium content in the soil were significantly affected by S-K-Mg application.

Physico-chemical properties between organic and conventional kiwifruit orchards in Korea

  • Cho, Y.;Kim, B.;Cho, H.;Jeong, B.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.242-246
    • /
    • 2011
  • Organic kiwifruit orchard soils were compared with conventional ones in Korea. Soil structure of organic soil had higher gaseous and liquous phase as well as soil porosity in the surface soil. Although the nutritional level of each orchards were quite different among soils, the analysis of both system revealed that organic kiwifruit orchard soil had similar or even higher nutrient level (N and organic matter content in surface soil) compared to conventional ones. The organic matter content of deep soil also had the high tendency in deep soil of organic soil. Higher level of nitrogen in organic surface soil is presumably due to the excessive application of organic compost and liquid fertilizer rather than the contribution by grasses such as green manure. Available phosphorous level of organic system was quite high but similar in surface soil of both system, compared to the recommended level. Potassium, calcium and magnesium levels were also enough in organic kiwifruit orchard soils.

Effects of Soil Organic Matter Content on Activity Change, Vertical Migration, and Persistence of Two Nematicides, Carbofuran and Ethoprophos, to Root-Knot Nematode, Meloidogyne incognita (토양중 유기물함량 차이에 따른 고구마뿌리혹선충(Meloidigyne incognita)에 대한 Carbofuran과 Ethoprophos의 효력변동, 수직이동성 및 잔효성조사)

  • Song, Cheol;Hwang, In-Taek;Jang, Kyoung-Soo;Cho, Kwang-Yun
    • Korean journal of applied entomology
    • /
    • v.38 no.1
    • /
    • pp.47-52
    • /
    • 1999
  • Effects of organic matter content in soil on activity. vertical migration. and persistence of two nernaticides. carbofuran and ethoprophos. to root-knot nematode, Mrloitlog!~iei ~lcognita.w ere investigated. As the organic matter content increased. activity of the nernaticides tended to be reduced. Both nematicides exhibited control values of more than 80'k' to M. iix.o,yilit~iln 0-2 cm depth soil layer from the surface. regi~rdless of organic matter content in soil. In 2-4 cm depth soil layer. however. the control value of the neniaticides varied with the organic niatter content in soil. The control value of carbofuran in the soil layer was ranged from I0 to 30'2,. depending on the soil organic niatter content. In contrast. ethoprophos had no control value against M. i/ic.o,ytlitcr in the \oil layer, except that the nematicide had a control value of 30% when the organic matter content was 0.4%. Furthermore. ethoprophos had no effect on controlling M. i/ic.o,gtiitrr in soil layer of below 4cm. whereas control values of carbofuran were approximately from 5 to 20% in all test soils having different organic matter contents. These results indicate that carbofuran has more vertical migration effect than ethoprophos. Persistence of the two neniaticides was also decreased with increasing soil organic matter content. Half life of carbofuran was 2-3 weeks in soil containing 0.4% organic matter, whereas it was found to be I week in soils containning 0.8 ant1 1.6% of organic matter. On the other hand. activity of ethoprophos was reduced to half in 3-3 weeks and in 2-3 weeks in soil containing 0.4 and 0.8%, and 1.6%) of organic matter, respectively. However, no activity of the both nernaticides was found in soil containing 3.2% of organic matter.

  • PDF

Development of Electronic Mapping System for N-fertilizer Dosage Using Real-time Soil Organic Matter Sensor (실시간 토양 유기물 센서와 DGPS를 이용한 질소 시비량 지도 작성 시스템 개발)

  • 조성인;최상현;김유용
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.259-266
    • /
    • 2002
  • It is crucial to know spatial soil variability for precision farming. However, it is time-consuming, and difficult to measure spatial soil properties. Therefore, there are needs fur sensing technology to estimate spatial soil variability, and for electronic mapping technology to store, manipulate and process the sampled data. This research was conducted to develop a real-time soil organic matter sensor and an electronic mapping system. A soil organic matter sensor was developed with a spectrophotometer in the 900∼1,700 nm range. It was designed in a penetrator type to measure reflectance of soil at 15cm depth. The signal was calibrated with organic matter content (OMC) of the soil which was sampled in the field. The OMC was measured by the Walkeley-Black method. The soil OMCs were ranged from 0.07 to 7.96%. Statistical partial least square and principle component regression analyses were used as calibration methods. Coefficient of determination, standard error prediction and bias were 0.85 0.72 and -0.13, respectively. The electronic mapping system was consisted of the soil OMC sensor, a DGPS, a database and a makeshift vehicle. An algorithm was developed to acquire data on sampling position and its OMC and to store the data in the database. Fifty samples in fields were taken to make an N-fertilizer dosage map. Mean absolute error of these data was 0.59. The Kring method was used to interpolate data between sampling nodes. The interpolated data was used to make a soil OMC map. Also an N-fertilizer dosage map was drawn using the soil OMC map. The N-fertilizer dosage was determined by the fertilizing equation recommended by National Institute of Agricultural Science and Technology in Korea. Use of the N-fertilizer dosage map would increase precision fertilization up to 91% compared with conventional fertilization. Therefore, the developed electronic mapping system was feasible to not only precision determination of N-fertilizer dosage, but also reduction of environmental pollution.

A Study on the Influence of the Organic Matter Contents in Soil Deposited of Chlorine Gas (염소의 토양 침적특성에 미치는 토양 내 유기물 함량의 영향)

  • Song, Bo Hee;Lee, Kyung Eun;Yim, Sang Sik;Lee, Jin Han;Jo, Young Do
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • In the event of toxic gas accidents, soil deposition is a main factor which has an effect on extent of the damage. In this study, it presents the influence of soil deposition properties according to the change of soil depth and the organic matter contents in soil. In this experimentation, the soil deposition device developed in Air Force Research Laboratory in USA is recreated. The tested samples of mixing soil have each value of the organic matter contents. After a variety of synthetic soil were exposed to constant Cl2 concentration, the chlorinity is measured using an anion exchange chromatography(ICS-1100) to quantify the mount of deposition. As the results, the increase of soil depth causes an decreased soil deposition and the increase of exposure time causes an increased soil deposition in surface. Also, the increase of soil deposition mainly depended on the organic matter contents in surface.

Soil Physical Properties and Organic Matter (토양(土壤)의 물리성(物理性)과 유기물(有機物))

  • Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.3
    • /
    • pp.145-160
    • /
    • 1979
  • The effects of organic material application on soil physical properties were reviewed in relation to soil productivity. The organic matter contents and soil physical properties of the cultivated land in Korea were summarized and the effects of organic matter were compared in terms of land uses and soil types. Soil physical properties related to crop yield potential, such as soil aggregation, permeability, water holding capacity, erodibility, and compactibility, were used in evaluating the effects of organic materials as a soil physical amendment. The benefical effects of organic matter addition on soil physical conditions include (1) better aeration and increased infiltration in silty and clayey soils, (2) increased water holding capacity and moisture availability in sandy soils, (3) decreased soil erodibility, and (4) increased resistance to compaction. It is, therefore, concluded that continuous application of organic materials could greatly improve the various soil physical properties and favor the growth and yield of crops. A high rate of organic matter addition could contribute to reducing not only the soil erosion on sloping land, but also the possible detrimental effect of farm mechanization. In general, the effects of organic matter on soil physical improvement were estimated to be much higher in upland than in paddy. Organic matter would have a more pronounced effect on low productive lands such as heavy clayey or sandy soils and newly reclaimed soil. The optimum level of soil organic matter content was estimated to be about 3.0 to 3.5% for the best soil physical condition. Since the organic matter contents of the cultivated lands in Korea are much lower than optimum level, it would be desiable to use more organic materials to soil for the increase of soil productivity, continuation of stabilized high productivity and soil erosion control.

  • PDF

A KINETIC ANALYSIS OF ORGANIC RELEASE FROM THE AQUIFER SOIL IN RIVERBANK/BED FILTRATION

  • Ahn, Kyu-Hong;Moon, Hyung-Joon;Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.199-204
    • /
    • 2005
  • Experiments were performed to estimate the organic release from the aquifer soil in riverbank and/or riverbed filtration via a kinetic approach. Organic release was assumed as a reaction of first order regarding concentrations in both soil and water phases. The reaction rate constants were obtained by comparing the model predictions with the experimental data of organic release reaction and the equilibrium distribution of organic matter between water and soil phases. Results show that the organic release from the aquifer soil was not negligible under normal conditions in Korea reaching 4.7mg-COD/L-day. This indicates that manganese and iron start to be released from aquifer soil in the riverbank filtration in the middle reach of the Nakdong river if the travel time of the filtrate exceeds about 5 days. It was also seen that the COD of the soil organic matter was 0.89mg-COD/mg-OM and that 65% of the COD was BOD5.

Assessing Organic Matter and Organic Carbon Contents in Soils of Created Mitigation Wetlands in Virginia

  • Ahn, Changwoo;Jones, Stacy
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.151-156
    • /
    • 2013
  • Several soil properties were studied from three young created mitigation wetlands (<10 years old), which were hydrologically comparable in the Piedmont region of Virginia. The properties included soil organic matter (SOM), soil organic carbon (SOC), pH, gravimetric soil moisture, and bulk density ($D_b$). No significant differences were found in the soil properties between the wetlands, except SOM and SOC. SOM and SOC indicated a slight increase with wetland age; the increase was more evident with SOC. Only about a half of SOC variability found in the wetlands was explained by SOM ($R^2$ = 0.499, p < 0.05). The majority of the ratios of SOM to SOC for these silt-loam soils ranged from 2.0 to 3.5, which was higher than the 1.724 Van Bemmelen factor, commonly applied for the conversion of SOM into SOC in estimating the carbon storage or accumulation capacity of wetlands. The results may caution the use of the conversion factor, which may lead to an overestimation of carbon sequestration potentials of newly created wetlands. SOC, but not SOM, was also correlated to $D_b$, which indicates soil compaction typical of most created wetlands that might limit vegetation growth and biomass production, eventually affecting carbon accumulation in the created wetlands.

Comparison of Soil Chemical Properties and Heavy Metal Contents in Organic and Conventional Paddy of Yongin and Anseong (용인과 안성 지역의 유기논 및 관행논에서 토양 화학 특성 및 중금속 함량 비교)

  • Gu, Bon-Wun;Lee, Tae-Gu;Kang, Ku;Hong, Seong-Gu;Hong, Seung-Gil;Jang, Tae-Il;Kim, Jin-Ho;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • The aim of this study is to investigate the chemical properties and heavy metal concentration of soils in conventional and organic paddy. We sampled and analyzed topsoil (0~15 cm) and subsoil (15~30 cm) of conventional and organic paddy fields in Yongin and Anseong, South Korea. The statistical significance between groups was determined by Duncan's multiple range test and correlation between soil properties was also analyzed. The results show that organic matter (OM) and T-N of conventional paddy soil were higher than those of organic paddy soil. However, higher T-P concentration was observed in organic paddy soil than conventional paddy soil. As, Pb, and Zn concentration in organic paddy soil were statistically lower than those in conventional paddy soil. The couple of water content (WC) & As, OM & T-N, T-P & $P_2O_5$, T-P & Zn, $P_2O_5$ & Zn, and Cr & Ni had a good positive correlation but the couple of WC & T-P, WC & Zn, T-P & As, and As & Zn had a strong negative correlation. It can be concluded that organic farming is beneficial to soil environment by reducing the amounts of organic matter, T-N, As, Pb, and Zn concentration in paddy soil when compared to conventional farming.

하수슬러지의 토양개량재 적용시 유기인계 농약의 흡착능력에 관한 연구

  • 임은진;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.125-130
    • /
    • 2004
  • This study has been assessed the influence of applying sewage sludge to soil amendments on the sorption properties, and leaching potential of three commonly used organophosphorus pesticides, Diazinon, Fenitrothion, and Chlorpyrifos. A sandy soil with a low content of organic carbon was treated with sewage sludge with a ratio sandy soil : sludge ratio of 30:1. The sorption was determined with the batch equilibrium technique. The sorption isotherms could be described by Freundlich equation. The Freundlich constant, K value which measures sorption capacity, were 3.97, 9.94, 22.48 for Diazinon, Fenitrothion, Chlorpyrifos in non-amended soil. But in amended soil, K value was 12.58, 28.47, and 61.21 for Diazinon, Fenitrothion, and Chlorpyrifos. The overall effect of sewage sludge addition to soil was to increase pesticides adsorption, due to the high sorption capacity of the organic matter. The effect of sludge on tile leaching of pesticides in the soil was studied using packed soil columns. Total recoveries of pesticides in soil and leachate with leaching in soil column, were in the range of about 73~84%, was reduced with the passage of time. Diazinon moved more rapidly than Chlorpyrifos in the unamended soil due to greater sorption and lower water solubility of Chlorpyrifos. Total amounts of pesticides leached from the sewage sludge amended soils were significantly reduced when compared with unamended soils. This reduction may be mainly due to and increase in sorption in amended soils, as a consequence of the increase in the organic matter content.

  • PDF