• Title/Summary/Keyword: soil nitrate

Search Result 602, Processing Time 0.02 seconds

Effect of Nitrate Concentration in Culture Solution on the Growth and the Uptake of Inorganic Elements of Tomato Plants(Lycopersicum esculentum Mill) (배양액(培養液)의 질산태질소농도가 토마토(Lycopersicum esculentum Mill)의 생육 및 무기원소(無機元素) 흡수에 미치는 영향)

  • Lee, Kwang-Seek;Yu, Jing-Quan;Matsui, Yoshihisa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.29-34
    • /
    • 1997
  • This experiment was carried out to investigate the effects of nitrate concentration in culture solution on the growth and the uptake of inorganic elements in Tomato plant in the greenhouse. Tomato plants(cv. TVR-2) were grown with nitrate concentrations 8, 16, 24, 32cmol/l, based on Japan ENSI standard solution. Dry weights of lamina and petiole increased with the nitrate concentration. However, the dry weight of fruit was the highest in the treatment of nitrate concentration of 16cmol/l. The proportion of dry weights of vegitative organ to reproductive organ was the lowest in the treatments of nitrate concentrations of 16cmol/l and it increased with the nitrate concentration. The fruit yield was the highest at the treatment of nitrate concentration of 16cmol/l. With the increase of nitrate level the concentrations of N, $NO_3-N$, Ca and Na increased in lamina and petioles. The concentrations of K, P, S and Cl tended to decline in the nitrate concentration of 16 and 32cmol/l. These results indicate that optimum nitrate concentrations in a tomato grown by hydroponics change with growth stage, and the optimum concentrations for vegitative and reproductive stage were 8 and 16cmol/l, respectively. It also was proved that the nitrate concentrations in the culture solution affected antagonistically the uptake of inorganic anion in tomato : In low nitrate level $Cl^-$ uptake was affected much, while $SO_4{^{2-}}$ and $H_2PO_4{^-}$ uptake were affected in high nitrate level.

  • PDF

Effect of Electron Acceptors on the Anaerobic Biodegradation of BTEX and MTBE at Contaminated Sites (전자 수용체가 BTEX, MTBE로 오염된 토양의 혐기성 자연정화에 미치는 영향)

  • Kim, Won-Seok;Kim, Ji-Eun;Baek, Ji-Hye;Sang, Byoung-In
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.403-409
    • /
    • 2005
  • Methyl tert-butyl ether (MTBE) contamination in groundwater often coexists with benzene, toluene, ethylbenzene, and xylene (BTEX) near the source of the plume. Then, groundwater contamination problems have been developed in areas where the chemical is used. Common sources of water contamination by BTEX and MTBE include leaking underground gasoline storage tanks and leaks and spills from above ground fuel storage tanks, etc. In oil-contaminated environments, anaerobic biodegradation of BTEX and MTBE depended on the concentration and distribution of terminal electron acceptor. In this study, effect of electron acceptor on the anaerobic biodegradation for BTEX and MTBE-contaminated soil was investigated. This study showed the anaerobic biodegradation of BTEX and MTBE in two different soils by using nitrate reduction, ferric iron reduction and sulfate reduction. The soil samples from the two fields were enriched for 65 days by providing BTEX and MTBE as a sole carbon source and nitrate, sulfate or iron as a terminal electron acceptor. This study clearly shows that degradation rate of BTEX and MTBE with electron acceptors is higher than that without electron acceptors. Degradation rate of Ethylbenzene and Xylene is higher than that of Benxene, Toluene, and MTBE. In case of Benzene, Ethylbenzene, and MTBE, nitrate has more activation. In case of Toluene and Xylene, sulfate has more activation.

Nitrogen Dynamics in Soil Amended with Different Rate of Nitrogen Fertilizer

  • Kim, Sung Un;Choi, Eun-Jung;Jeong, Hyun-Cheol;Lee, Jong-Sik;Lee, Hyun Ho;Park, Hye Jin;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.574-587
    • /
    • 2017
  • Excessive application of nitrogen (N) fertilizer to support switchgrass growth for bioenergy production may cause adverse environmental effects. The objective of this study was to determine optimum N application rate to increase biomass yield of switchgrass and to reduce adverse environmental effects related to N. Switchgrass was planted in May 2008 and biomass yield, N uses of switchgrass, nitrate ($NO_3$) leaching, and nitrous oxide ($N_2O$) emission were evaluated from 2010 through 2011. Total N removal significantly increased with N rate despite the fact that yield did not increased with above $56kg\;N\;ha^{-1}$ of N rate. Apparent nitrogen recoveries were 4.81 and 5.48% at 56 and $112kg\;N\;ha^{-1}$ of N rate, respectively. Nitrogen use efficiency decreased into half with increasing N rate from 56 to $112kg\;N\;ha^{-1}$. Nitrate leaching and $N_2O$ emission were related to N use of switchgrass. There was no significant difference of cumulative $NO_3$ leaching between 0 and $56kg\;N\;ha^{-1}$ but, it significantly increased at $112kg\;N\;ha^{-1}$. There was no significant difference of cumulative $N_2O$ emission among N rates in crest, but it significantly increased at $112kg\;N\;ha^{-1}$ in toe. Excessive N application rate (above $56kg\;N\;ha^{-1}$) beyond plant requirement could accelerate $NO_3$ leaching and $N_2O$ emission in switchgrass field. Overall, $56kg\;N\;ha^{-1}$ might be optimum N application rate in reducing economic waste on N fertilizer and adverse environmental impacts.

Biodegradation of Polynuclear Aromatic Hydrocarbons in soil using microorganisms under anaerobic conditions (혐기성 미생물에 의한 토양내 다핵성방향족화합물의 생물학적 분해)

  • An, Ik-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.89-91
    • /
    • 2000
  • Polynuclear aromatic hydrocarbon (PAH) compounds are highly carcinogenic chemicals and common groundwater contaminants that are observed to persist in soils. The adherence and slow release of PAHs in soil is an obstacle to remediation and complicates the assessment of cleanup standards and risks. Biological degradation of PAHs in soil has been an area of active research because biological treatment may be less costly than conventional pumping technologies or excavation and thermal treatment. Biological degradation also offers the advantage to transform PAHs into non-toxic products such as biomass and carbon dioxide. Ample evidence exists for aerobic biodegradation of PAHs and many bacteria capable of degrading PAHs have been isolated and characterized. However, the microbial degradation of PAHs in sediments is impaired due to the anaerobic conditions that result from the typically high oxygen demand of the organic material present in the soil, the low solubility of oxygen in water, and the slow mass transfer of oxygen from overlying water to the soil environment. For these reasons, anaerobic microbial degradation technologies could help alleviate sediment PAH contamination and offer significant advantages for cost-efficient in-situ treatment. But very little is known about the potential for anaerobic degradation of PAHs in field soils. The objectives of this research were to assess: (1) the potential for biodegradation of PAH in field aged soils under denitrification conditions, (2) to assess the potential for biodegradation of naphthalene in soil microcosms under denitrifying conditions, and (3) to assess for the existence of microorganisms in field sediments capable of degrading naphthalene via denitrification. Two kinds of soils were used in this research: Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS). Results presented in this seminar indicate possible degradation of PAHs in soil under denitrifying conditions. During the two months of anaerobic degradation, total PAH removal was modest probably due to both the low availability of the PAHs and competition with other more easily degradable sources of carbon in the sediments. For both Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS), PAH reduction was confined to 3- and 4-ring PAHs. Comparing PAH reductions during two months of aerobic and anaerobic biotreatment of MHS, it was found that extent of PAHreduction for anaerobic treatment was compatible with that for aerobic treatment. Interestingly, removal of PAHs from sediment particle classes (by size and density) followed similar trends for aerobic and anaerobic treatment of MHS. The majority of the PAHs removed during biotreatment came from the clay/silt fraction. In an earlier study it was shown that PAHs associated with the clay/silt fraction in MHS were more available than PAHs associated with coal-derived fraction. Therefore, although total PAH reductions were small, the removal of PAHs from the more easily available sediment fraction (clay/silt) may result in a significant environmental benefit owing to a reduction in total PAH bioavailability. By using naphthalene as a model PAH compound, biodegradation of naphthalene under denitrifying condition was assessed in microcosms containing MHS. Naphthalene spiked into MHS was degraded below detection limit within 20 days with the accompanying reduction of nitrate. With repeated addition of naphthalene and nitrate, naphthalene degradation under nitrate reducing conditions was stable over one month. Nitrite, one of the intermediates of denitrification was detected during the incubation. Also the denitrification activity of the enrichment culture from MHS slurries was verified by monitoring the production of nitrogen gas in solid fluorescence denitrification medium. Microorganisms capable of degrading naphthalene via denitrification were isolated from this enrichment culture.

  • PDF

Fate of Nitrogen and Phosphorous in Hydroponic Waste Solution Applied to the Upland Soils (시설하우스 폐양액의 토양 처리에 따른 질소 및 인의 이동)

  • Yang, Jae-E.;Park, Chang-Jin;Yoo, Kyung-Yoal;Kim, Kyung-Hee;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.132-138
    • /
    • 2005
  • Objective of this research was to evaluate the fate of nitrogen and phosphorous in hydroponic waste solution from the plastic film house cultivation applied to the upland soil by column leaching and field experiment. The pH and EC of leachate were decreased by the reaction with the upland soil in the column leaching experiment. The EC and concentrations of $H^+,\;K^+,\;and\;{NH_4}^+$ of leachate were decreased as the column length (soil depth) was increased. But these were increased as the amounts of the hydroponic waste solution were increased field experiment growing red pepper (Capsicum annum L.) to monitor the nutrients movement using ion exchange resin capsule demonstrated that the nutrient concentration of soil solution was increased in the orders of $PO_4-P. Nitrate concentration of resin capsule inserted into the soil was relatively higher than other nutrients $(NH_4-N\;and\;PO_4-P)$ at the 45 cm of soil depth. The overall results demonstrated that the hydroponic waste solution could be recycled as plant nutrients to enhance fertility of soils. But nitrate leaching was a major factor for safe use of the hydroponic waste solution in soil.

COMPOSTING AND LAND APPLICATION OF ANIMAL WASTES

  • Harada, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.113-121
    • /
    • 1992
  • An the livestock production in Japan is industrialized, a tremendous amount of animal wastes is being produced annually, resulting in serious environmental pollution problems. Animal wastes could be pollutants, but they are also important sources of fertilizer nutrients and organic matter. Composting is an effective way of promoting the increased utilization of animal wastes. The characterization of maturing process during composting is important in order to improve the composting technology and to develop and efficient method to estimate the degree of maturity. The rise and fall in temperature, and changes in the constituents of the compost, reflect the maturing process and may serve as indicators for maturation. In addition, the detection of nitrate by diphenylamine, the determination of cation-exchange capacity (CEC), and the germination test, are also recommended as the methods of estimating the degree of maturity. The heavy applications of animal manure and compost may cause an adverse effect on soils and crops. When excess manure is applied, the nitrogen will be accumulated in soil, resulting in accumulation of nitrate in crops and pollution of the groundwater. Guidelines for application rates are recommended, to maintain soil productivity and quality of crops, and to prevent the environmental pollution.

A COMPARISON OF CHEMICAL PROPERTIES OF SOME FOREST SOILS (각종림토에 대한 화학성분의 비교)

  • Cha, Jong-Whan
    • Journal of Plant Biology
    • /
    • v.6 no.3
    • /
    • pp.1-5
    • /
    • 1963
  • Determination of the chemical properties in some forest soils and the naked soil developed on granite in the mountains of the vicinity of Seoul, Korea are presented in this study. The soil under the broad leaved forests has a higher nutrient indicated by available nitrogen, nitrate nitrogen, and phosphorus contents, compared with that under the needle leved forests. On the contrary the content of organic matter and base exchange capacity in the needle forest soils is higher than in the broad leaved forest soils. The significant difference between two horizons of each soil appeared only to be in the content of the available phosphorus, and that of the needle and the broad leaved forest soils, and the naked soils was the nitrate nitrogen and organic matter content among the several chemical properties.

  • PDF

1차원 현장 soil column 실험을 통한 SAT 반응 모델 검증

  • ;Jeongkon Kim
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.83-86
    • /
    • 2003
  • Soil Aquifer Treatment (SAT) is a technique in which secondary- or tertiary-treated wastewater is infiltrated through unsaturated soil and stored in the saturated zone. In SAT, contaminants are removed by physical and biochemical reactions taking place in soils. In this study, a numerical model was developed to predict changes in water quality during SAT operations. The contaminant species considered in the model were ammonium, nitrate, dissolved organic carbon, and dissolved oxygen. The model was calibrated against experimental data obtained from one dimensional soil column tests conducted for 84 days. The calibrated model will be used to find out optimum conditions for the pilot- and regional-scale SAT operations to be scheduled for the next phase of this project.

  • PDF

Runoff Loss of NO3-N Derived from Pig Manure Under Upland Condition (돈분이 시용된 밭토양에서 질산태질소의 유거손실)

  • Yun, Sun-Gang;Park, Kwang-Lai;Kim, Min-Kyeong;Kim, Won-Il;Yoo, Soon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.158-164
    • /
    • 2001
  • The purpose of this study was to assess the runoff of nitrogen derived from pig manure under upland condition. Bare and maize cultivated conditions were compared to estimate the effect of plant on the runoff loss of nitrogen and other nutrients by application of pig manure. Soil used in this experiment was sandy loam, and the fermented pig manure was applied at the rate of 0, 50, and $100ton\;ha^{-1}$. The amount of runoff was measured after every rainfall and water samples were analyzed for nitrate and other cations. Runoff was increased with the rainfall, but was depended on the application rate of pig manure at both bare and maize cultivated plots. Concentrations of nitrate in runoff at 0, 50 and $100ton\;ha^{-1}$ application of pig manure were higher at the maize cultivated plots than those at bare plots by 86.9, 42.9, and 33.6%, respectively. However, total mass of nitrate by runoff loss was higher at the bare plot ranging from 1.34 to $3.15kg\;NO_3-N\;ha^{-1}$. The equivalent ratio of nitrate to sum of cations in runoff was higher at the bare plot than that of maize cultivated plots. The concentration of cations in runoff was in the order of K> Mg> Na> Ca.

  • PDF

N Use Efficiency and Nitrate Leaching by Fertilization Level and Film Mulching in Sesame Cultivated Upland

  • Lee, Dong-Wook;Park, Ki-Do;Park, Chang-Young;Son, Il-Soo;Kang, Ui-Gum;Ko, Jee-Yeon;Shim, Kang-Bo;Cho, Young-Son;Park, Sung-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.296-302
    • /
    • 2007
  • This study was conducted to evaluate the effect of slow release fertilizers (SRF), crotonylidene diurea (CDU) and latex coated urea (LCU), on nitrogen (N) use efficiency (NUE) and nitrate-N leaching in a silty clay loam soil under polyethylene film mulching (PFM) for sesame cultivation. In PFM plot, concentrations of $NO_3-N$ and $NH_4-N$ in SRF applied soils were less than that in the urea plot during the whole growing period. However, $NO_3-N$ and $NH_4-N$ in all the non-mulched plots (NM) were not significantly different. Urea-N in soil treated with SRF was higher than urea plot until 50 days after application and was comparable in all the treatments after 50 days. $NO_3-N$ concentrations in leached solution in 21 days after urea fertilization in PFM and NM were 26 mg $L^{-1}$ and 83 mg $L^{-1}$, respectively. However, $NO_3-N$ in leached solution at applied CDU and LCU was less than that of urea similar to nitrate concentration in soil. $NO_3-N$ in leached solution in applied CDU and LCU in 44 days after application was about 25% lower than that urea plot and PFM, while the $NO_3-N$ concentration of CDU and LCU treatment in NM did not changed. Application of SRF increased the yield of sesame and N recovery compared to urea and there was a little difference between SRF and N levels. In conclusion, application of 80% N level with SRF increased N recovery and reduced nitrate leaching without reduction of yields compared with urea application.