• Title/Summary/Keyword: soil moisture movement

Search Result 36, Processing Time 0.03 seconds

Comparison of Fecal Microbes' Survival in Soil between Compost Surface Application and Soil Incorporation (지표와 지중 퇴비 시비에 따른 토양에서의 분변성 미생물 생존성 비교)

  • Jun, Sang Min;Song, Inhong;Kim, Kyeung;Hwang, Soon Ho;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • The objective of this study was to compare fecal microbes survival in soil between compost surface application and soil incorporation. The survival experiment was conducted in six styrofoam beds ($510{\times}325{\times}305(mm)$ in size) filled with sandy loam soil. A half of six boxes were received by compost surface application, while the other half were treated with compost-soil mixture. Duplicated surface and surbsurface soil (20 cm depth) samples were collected at various interval up to 50 days and analyzed for the determination of fecal coliforms and E. coli numbers. As expected, surface applied beds demonstrated two to three magnitudes order greater in both the study microorganisms as compared to soil incorporated beds. Microbial inactivation rate of soil surface was twice as great as subsurface soil condition probably due to exposure to sun light and environmental conditions including moisture loss. When rainfall occurred, microbes on the surface were transported into soil along with water movement. It was concluded that surface compost application may be easier to apply but pose higher risk of human exposure to microbes. Winter compost application may be favorable in alleviating health risk by giving some time for inactivation compared to spring application.

Consolidation of marine clay using electrical vertical drains

  • Shang, J.Q.;Tang, Q.H.;Xu, Y.Q.
    • Geomechanics and Engineering
    • /
    • v.1 no.4
    • /
    • pp.275-289
    • /
    • 2009
  • Electroosmosis (EO) is the movement of water in a porous medium under the influence of a direct current (dc). In past decades, electro-osmosis has been successfully employed in many soil improvement and other geotechnical engineering projects. Metal electrodes, such as steel, copper and aluminum have been used traditionally to conduct current. The shortcoming of these electrodes is that they corrode easily during an EO treatment, which results in reduced effectiveness and environmental concerns. More recently, conductive polymers are developed to replace metal electrodes in EO treatment. Electrical vertical drainages (EVDs) are one of these products under trial. The goal of this study is to assess the performance of EVDs for soil improvement and to further understand the scientific principle of the EO process, including the voltage drop at the soil-EVD interface, electrical current density, polarity reversal, and changes in soil physico-chemical properties generated by electroosmosis. It is found from the study that after 19 days of EO treatment with a constant applied dc electric field intensity of 133 V/m, the soil's moisture content decreased by 28%, the shear strength and pre-consolidation pressure increased more than 400%. It is also found that the current density required triggering the water flow in the soil tested, the Korean Yulchon marine clay, is 0.7 $A/m^2$. The project demonstrates that EVDs can serve as both electrodes and drains for soil improvement in short term. However, the EVDs, as tested, are not suitable for polarity reversal in EO treatment and their service life is limited to only 15 days.

Determination of Failure Mechanism of Slope Calibration Chamber Tests Using Rainfall Simulation (I) (인공강우에 의한 모형토조사면의 붕괴메카니즘 결정 (I))

  • Jeong, Ji-Su;Jung, Chun-Gyo;Lee, Jong-In;Lee, Seong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.27-34
    • /
    • 2011
  • This study analyzes the determination of slope failure model due to changes in ground condition followed by heavy rainfall. With a simulated rainfall system, the movement of a slope from the rainfall penetrating the unsaturated soil is investigated with respect to various conditions of pore-water pressure, earth pressure, and moisture content, considering rainfall duration and permeability. As a result of the experiment, under the persistent precipitation of 50mm/h, pore-water pressure of weathered granite soil started increasing from the upper position of the slope, and then the pressure increased in middle and bottom portion of it in timely manner. In case of the pore-water pressure of the standard soil, the pressure increased from the middle and bottom portion, and the cause of the different order is suspected to be the difference in permeability between the standard soil and the weathered granite soil. As an outcome, though the result may vary by each foundation, there exists a danger of slope failure not only when the cumulative rainfall is more than 120 mm but also when the saturation level amounts to 60~75%.

Comparison of Wetting and Drying Characteristics in Differently Textured Soils under Drip Irrigation (점적관개 시 토성별 습윤.건조 특성 비교)

  • Kim, Hak-Jin;Son, Dong-Wook;Hur, Seung-Oh;Roh, Mi-Young;Jung, Ki-Yuol;Park, Jong-Min;Rhee, Joong-Yong;Lee, Dong-Hoon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.309-315
    • /
    • 2009
  • Maintenance of adequate soil water content during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement for precision irrigation would allow efficient supply of water to crops, thereby resulting in minimization of water drainage and contamination of ground water. This research reports on the characterization of spatial and temporal variations in water contents through three different textured soils, such as loam, sandy loam, and loamy sand, when water is applied on the soil surface using an one-line drip irrigation system and the soils are dried after the irrigation stops, respectively. Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30cm depths. Spatial variability in water content for each soil type was strongly influenced by soil textural class. There were big differences in wetting pattern and the rate of downward movement between loam and sandy loam soils, showing that the loam soil had a wider wetting pattern and a slower rate of downward movement than did the sandy loam soil. The wetting pattern in loamy sand soil was not apparent due to a low variability in water content (< 10%) by a lower-water holding capacity as compared to those measured in the loam and sandy loam soils, implying that the rate of water drainage below a depth of 30cm was high. When soils were dried, there were highly exponential relationships between water content and time elapsed after irrigation stops ($r^2$${\geq}$0.98). It was estimated that equilibrium moisture contents for loam, sandy loam, and loamy sand soils would be 17.6%, 6.2%, and 4.2%, respectively.

Failure Predict of Standard Sand Model Slope using Compact Rainfall Simulation (소형 인공강우 장치에 의한 표준사 모형사면의 붕괴 예측)

  • Moon, Hyo Jong;Kim, Dae Hong;Jeong, Ji Su;Lee, Seung Ho
    • Journal of Korean Society of Disaster and Security
    • /
    • v.8 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • This study analyzes the failure predict of model slope due to changes in ground condition followed by heavy rainfall with a simulated rainfall system. the movement of a slope from the rainfall penetrating the unsaturated soil is investigated with respect to various conditions of pore-water pressure, earth pressure and moisture content, considering rainfall duration and permeability.

A Note on Under ground water (지하수에 대한 소고)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.8 no.1
    • /
    • pp.1055-1063
    • /
    • 1966
  • Ground water hydrology may be defined as the science of the occnrrence, distribution, and movement of water below the surface of the earth. Geohydrology has an identical connotation, and hydrogeology differs only by its greater emphasis on geology. Ground water referred to with out further specification is commonly understood to mean water occupying all the voids with in a geologic stratum. This saturated zone is tobe distinguished from an unsaturated, or aeration zone where voids are filled \yith water and air. Water contained in saturate:! zones is important for engineering works, geologic studies, and water supply developements Conseqently, the occurrence of water in these zones will be emphasized here. Un-saturated zones are usualiy found above saturated zones and extending upward to the ground surface. Because this water includes soil moisture with in the root zone, it is a major concern of agricultlre, botmy and soil science. No rigid demarcation of waters, between the two zones is possible, for they possess an iriterdependent boundary and water can move from zone to zone in either science, including eology, hydrology, meteorology, and oceanography are concerned with earths water, but ground water hydrology may be regarded as a specialized science combining elements of geology, hydrology, and fluid mechanics. Geology governs the occurrence and distribution of ground water, hydrology determines the supply of water to the ground, and fluid mechanics explains its movement. To provide maximum development of grofnd water resources. for benefical use requires thinking in terms of an entire ground water basin. In order to inorease the natural supply of ground water, man has attempted to artifially recharge ground water basins. Coastal aquifers come in contact with the ocean at seawater of the coastline. Fresh ground water is discharged in to the ocean. the seaward flow of ground water has been decreased or even reversed, Sea water penettating in land in aquifer.

  • PDF

Effects of Some Soil Conditioners on Soil Physical Properties and Lettuce Growth (토양구조개선제(土壤構造改善劑) 처리(處理)가 토양물리성(土壤物理性)과 상추생육(生育)에 미치는 영향(影響))

  • Ryu, In-Soo;Han, Jeung-Lim;Jo, In-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.249-255
    • /
    • 1995
  • This study was conducted to investigate the effects of some soil conditioners, such as polyacrylamide(PAM), polyvinylalcohol(PVA) and Bitumen emulsion, on aggregate formation and stability, wetting angle, sorptivity and penetrability of the soil with different textures : sand, sandy loam, loam and clay loam. A pot experiment was carried out to find out the effect of treatment on the germination and growth of lettuce with three textures : sand, sandy loam and silt loam. Soil aggregates larger than 2mm in untreated soils at dry condition were naught in sand, 45% in sandy loam, 80% in loam and 90% in clay loam. Treatments of soil conditioners tended to increase the occurrence of soil aggregate larger than 2mm, which were 20~25% in sand, 55~75% sandy loam, but not affected greatly aggragate occurence in loam and clay loam. The aggregate instability was decreased by the soil conditioner treatment. The wetting angles of the soils were greatly changed by hydrophobic of Bitumen, but those were changed slightly by PVA and PAM application. The sorptivity and penetrability data indicated that the effects of different materials on these parameters differed depending upon soil texture. Application of PVA and PAM were no effect exceptive in sand. Application of Bitumen revealed that water movement was not showed in all soils. The germination rate, root weight and top plant weight of lettuce were increased in all soils by PAM treatment as compared to untreated soils. Particularly the greater effect was occurred in sand soil than in sandy loam and silt loam. PAM increased greatly the moisture content and air phase of soils.

  • PDF

Simulation and Measurement of Degradation and Movement of Insecticide Ethoprophos in Soil (토양(土壤)중 살충제(殺蟲劑) ethoprophos의 분해성(分解性) 및 이동성(移動性)의 측정(測定)과 예측(豫測)에 관한 모델 연구(硏究))

  • Moon, Young-Hee;Kim, Yun-Tae;Kim, Young-Seok;Han, Soo-Kon
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.3
    • /
    • pp.209-218
    • /
    • 1993
  • The behaviour of insectcide ethoprophos (O-ethyl S,S-propyl phosphorodithioate) in soil was investigated. In a laboratory study, the degradation of ethoprophos in soil followed first-order reaction kinetics. The half-life of the insecticide in the soil incubated with 10, 18 and $25^{\circ}C$ was 12.4, 5.5 and 2.5 days, respectively. Arrhenius activation energy was 73.8 KJ/mole. The half-life was 46.4, 17.6 and 6.9 day in the soil with 7, 14 and 19% of soil water content, respectively. The moisture dependence B value in empirical equation was 1.67. The adsorption isotherm for ethoprophos in the soil agreed with freundlich equation. The adsorption distribution coefficient (Kd) was 0.27. In a field study prepared in autumn with undisturbed soil column in a mini-lysimeter system, ethoprophos residues were largely distributed in the top $0{\sim}2cm$ soil layer and moved down to the top 6cm soil layer. Persistence of ethoprophos in field soil was correlated with variation in weather pattern during the period of experiments. The half-life of ethoprophos treated at March and October was about 17 and 5 days, respectively. The ethoprophos woil was degraded up to 90% at 37day after the both treatment. In persistence and mobility of ethoprophos in field soil, the observed data were reasonably corresponded with predicted data by some computer model of pesticide behaviour.

  • PDF

Studies on Soil Conservation Effects of the Straw-mat Mulchings (I) - Vegetation Establishment and Erosion Control Effects - (볏짚거적덮기공의 사방효과(砂防効果)에 관(關)한 연구(硏究)(I) - 사면지피조성(斜面地被造成) 및 침식방지(浸蝕防止) 효과(効果) -)

  • Woo, Bo Myong
    • Journal of Korean Society of Forest Science
    • /
    • v.13 no.1
    • /
    • pp.67-78
    • /
    • 1971
  • The measures of contour-terracing with sod has been executed as a major measures for hillside erosion control works for a long time in Korea. It is, however, recognized that pair terracings make a new slope-face having the more steeper degree of slope between the upper and the lower terraces on hillsides and it also does not contribute for establishing the natural vegetation-cover by penetration of pioneer seeds on the slope faces or cut-faces of hillsides. The study was therefore conducted in connection with the above problems on the cut-face having slope of $40^{\circ}$ and 1.6 meter in slope length with clay soils. Plot allocation for the experiment consists of 3 kinds of 3 replica plots having each $1.6m^2$ of slope area, i. e., the control plot with direct seeding on slopes only ($T_1$), the covering plot with the straw-mats after seeding on slopes ($T_2$) and the seeding plot after covering with the straw-mats. ($T_3$). The main results obtained may be summarized as follows : 1. Effects of the straw-mat mulchings on surface soil loss control:-The total amount of soil losses from each treatments are measured as 4,651 gr from $T_1$, 163 gr. from $T_2$ and 2,891 gr. from $T_3$ treatment respectively. (Refer to table No. 2, 3 and 4). In short, it is recognized that effect of $T_2$ treatment is compared as 28.5 times than that of $T_1$ treatment and 17.7 times than that of $T_3$ treatment respectively. Effect of $T_3$ treatment compared with $T_1$ treatment is also such recognizable as 1.6 times in control of surface soil losses on a slope face. 2. Effect of the straw-mat mulchings on soil moisture content on slopes; -Average per cent of surface soil moisture content by treatments show as 21.60 at the $T_1$, 23.04 at the $T_2$ and 22.21 at the $T_3$ treatment respectively and that of subsurface soil moisture content by treatment show as 23.81 at the $T_1$, 26.16 at the $T_2$ and 24.81 at the $T_3$ treatment respectively. The variance of soil moisture content by treatments was highly significant (Refer table No. 7, 8 and 9). 3. Effect of the straw-mat mulchings on vegetation establishment;-Average numbers of germination by treatments are counted as 237 Nos. at the $T_1$, 246 Nos. at the $T_2$ and 262 Nos. at the $T_3$ treatment plots and the vegetation coverage on ground was almost same as about 90% of covers in all treatments. This effect is more or less lower than that of surface soil erosion control. 4. Regarding the effect on surface soil erosion control, the straw-mat mulchings would be effective as a new measures for control of soil erosion on erosion susceptible lands such slope-faced bare-lands as cut-fill faces, mass-movement faces and bare hillsides.

  • PDF

Effects of the Freeze-thaw Process on the Strength Characteristics of Soils (IV) -Insulation Performance beneath the Freezed Tested Banking by Inclusion of Insulation Material- (동결-융해작용이 흙의 강도특성에 미치는 영향 (IV) - 단열재를 삽입한 동결성토의 단열거동 -)

  • 유능환;박승범;유영선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.39-46
    • /
    • 1990
  • This paper was analized the thermal conductivity of polystylene (TENSAR- GEOGRID) embeding into the subbase through frost penetration depth, frost heave, change of bearing capacity, and soil moisture movement due to freezing, thawing and icing actions, and their results were as follows : 1.The change of temperature into the sub-base was much increased by the Tensar-Geogrid insertion, and the frost penetration and frost heave were decreased as the thinner of the insulation thickness but the thawing velocity of melting period was appeared to be faster in case of non-insulated. 2.The frost heave had a close relationship with the thickness of insulations which was reasonably included anti-frost effects. 3.The moisture content during the freezing period of upper layer of the insulation insertion was increased by 15 per cent but it was returned to initial state of the thawing period, and at the down layer temporarily increased by 10 per cent and returned to the original state at once. 4.The insulation was acted as a function of distribution of surcharge, and the settlement of the sub-base was about 1.5 mm under 15 tonnage of load and which was included within the allowable limits. 5.The sliding resistance due to the icing which was induced by the insulation insertion into the sub-base was appeared as more 40 per cent than noninsulation area, so that the insulations should be restricted on the place such as mountains, curved and cross area which were required the braking power under the traffics.

  • PDF