Soil moisture content is generally accepted as an important factor to understand the process of crop growth and is the basis of earth system models for analysis and prediction of the crop condition. To continuously monitor soil moisture changes at kilometer scale, it is demanded to create high resolution data from the current, several tens of kilometers. In this paper we described a downscaling method for Advanced Microwave Scanning Radiometer 2 (AMSR2) Soil Moisture Content (SMC) from 10 km to 30 m resolution using a soil texture and field measurements that have a high correlation with the SMC. As a result, the soil moisture variations of both data (before and after downscaling) were identical, and the Root Mean Square Error (RMSE) of SMC exhibited the low values. Also, time series analyses showed that three kinds of SMC data (field measurement, original AMSR2, and downscaled AMSR2) had very similar temporal variations. Our method can be applied to downscaling of other soil variables and can contribute to monitoring small-scale changes of soil moisture by providing high resolution data.
국내에서 예상되는 물부족 현상을 극복하기 위해서는 수문 현상의 이해를 통한 수자원의 안정된 확보, 관리, 개발 등 수자원 관련 기술격의 발전이 필수적이라 하겠다. 물순환계통의 올바른 이해와 적합한 모형의 개발 및 검증을 위해서는 강우 및 토양수분의 대규모 원격측정이 필수적일 뿐 아니라 관측 격자 내에서 일어나는 변화도에 대한 이해가 필요하다. 가까운 장래에 예상되는 전구 관측 토양수분자료의 격자크기인 10km는 중ㆍ소규모 지역의 수문ㆍ기상모델 적용에 한계를 가진다. 목적에 따라 각 모델들이 필요로 하는 입력 자료의 격자크기가 다른 반면 각 모델에 대한 적합한 크기의 격자를 가진 다양한 입력 자료의 부재는 토양수분자료에 대한 적합한 downscaling 기법을 필요로 한다. 사용 가능한 보조 자료와 토양수분의 선형상관관계는 상당히 낮으므로 이들 상호관계를 선형관계의 합으로 나타내는데 한계를 가진다. 그러므로 본 연구에서는 physically-based 분리기법과 자료들 간의 비선형 상관관계를 나타내는데 적합한 신경망 기법을 이용한 downscaling 기법을 개발하였다. 개발된 downscaling 기법은 Washita'92 실험으로부터 획득된 토양수분 및 보조 자료를 사용하여 4km자료를 0.2km자료로 downscaling 하였으며 출력자료는 기존의 전형적 기법에 의하여 smoothing된 자료보다 개선된 결과를 보여주었다.
Soil moisture is essential information for meteorological and hydrological analyses. To date, many efforts have been made to achieve the two goals for soil moisture data, i.e., the improvement of accuracy and resolution, which is very challenging. We presented an ensemble downscaling method for quality improvement of gridded soil moisture data in terms of the accuracy and the spatial resolution by the integration of BMA (Bayesian model averaging) and ATPRK (area-to-point regression kriging). In the experiments, the BMA ensemble showed a 22% better accuracy than the data sets from ESA CCI (European Space Agency-Climate Change Initiative), ERA5 (ECMWF Reanalysis 5), and GLDAS (Global Land Data Assimilation System) in terms of RMSE (root mean square error). Also, the ATPRK downscaling could enhance the spatial resolution from 0.25° to 0.05° while preserving the improved accuracy and the spatial pattern of the BMA ensemble, without under- or over-estimation. The quality-improved data sets can contribute to a variety of local and regional applications related to soil moisture, such as agriculture, forest, hydrology, and meteorology. Because the ensemble downscaling method can be applied to the other land surface variables such as temperature, humidity, precipitation, and evapotranspiration, it can be a viable option to complement the accuracy and the spatial resolution of satellite images and numerical models.
With increasing satellite-based RS(Remotely Sensed) techniques, RS soil moisture footprints have been providing for various purposes at the spatio-temporal scales in hydrology, agriculture, etc. However, their coarse resolutions still limit the applicability of RS soil moisture to field regions. To overcome these drawbacks, the LDA(Landsat-based Downscaling Algorithm) was developed to downscale RS soil moisture footprints from the coarse- to finer-scales. LDA estimates Landsat-based soil moisture($30m{\times}30m$) values in a spatial domain, and then the weighting values based on the Landsat-based soil moisture estimates were derived at the finer-scale. Then, the coarse-scale RS soil moisture footprints can be downscaled based on the derived weighting values. The LW21(Little Washita) site in Oklahoma(USA) was selected to validate the LDA scheme. In-situ soil moisture data measured at the multiple sampling locations that can reprent the airborne sensing ESTAR(Electronically Scanned Thinned Array Radiometer, $800m{\times}800m$) scale were available at the LW21 site. LDA downscaled the ESTAR soil moisture products, and the downscaled values were validated with the in-situ measurements. The soil moisture values downscaled from ESTAR were identified well with the in-situ measurements, although uncertainties exist. Furthermore, the SMAP(Soil Moisture Active & Passive, $9km{\times}9km$) soil moisture products were downscaled by the LDA. Although the validation works have limitations at the SMAP scale, the downscaled soil moisture values can represent the land surface condition. Thus, the LDA scheme can downscale RS soil moisture products with easy application and be helpful for efficient water management plans in hydrology, agriculture, environment, etc. at field regions.
토양수분은 지표와 대기에서 물과 에너지를 교환하는 중요한 수문기상 인자임에도 불구하고 토양수분에 대한 중요성이 부족한 실정이다. 최근에는 위성기술의 발달로 Aqua위성에 탑재된 Advanced Microwave Scanning Radiometer E (AMSR-E)를 이용하여 토양수분을 측정하고 있다. 이는 토양수분을 측정하고 있는 가장 유용한 기기로서 25km의 낮은 공간 해상도를 가지고 있어 토양수분의 변화를 나타내는데 한계점을 가지고 있다. 본 연구에서는 AMSR-E의 공간 해상도를 높이고자 비교적 높은 해상도를 (1km) 가지고 있는 Moderate Resolution Imaging Spectroradiometer (MODIS)를 연동하였으며, MODIS의 산출물 중 Albedo, LST, NDVI 인자를 이용하였다. 이를 바탕으로 1km의 고해상도 일 별 토양수분 지도를 작성하였으며, 이 지도를 각각 관측 토양수분과 비교 검증하였다. 향후 일별 고해상도 토양수분 지도를 작성하면 우리나라에 대한 토양수분 데이터베이스를 구축해 나갈 수 있을 것이다.
토양수분은 일반적으로 시료를 채취하거나 현장에 설치된 다양한 센서를 통해 추정하지만 이는 시간과 비용이 많이 소모되기 ?문에 유역내의 공간적인 토양수분 분포를 추정하는데 상당한 어려움이 따른다. 토양수분뿐만 아니라 공간적인 대기현상, 토양수분, 식생현황 등을 관측하는데 대중적으로 사용되는 것이 위성 관측이며, 기본적으로는 위성에 탑재된 센서가 각 주파수대역에 따라 영상을 생성하면 이를 특정 알고리듬을 적용하여 원하는 값을 도출하게 된다. 토양수분 산정에 사용되는 대표적인 위성영상으로는 SMOS (Soil Moisture and Ocean Salinity), ARMS-E(Advanced Microwave Scanning Radiometer - Earth Observing System), ARMS2 (ARMS ver.2) 영상 등이 있으며, 이러한 위성은 해상도가 약 10 km ~ 40 km로 상당이 낮기 때문에 우리나라와 같이 면적이 좁고 지형이 복잡하며 다양한 토지피복이 밀집되어있는 곳에서는 기존 수문 연구에 응용할 수 있는 토양수분 공간지도 산정을 위해 상세화(Downscaling)과정이 필요하다고 판단된다. 따라서 본 연구에서는 ARMS2 토양수분 영상을 MODIS 영상의 식생지수(NDVI, Normalized Difference Vegetation Index), 알베도 및 온도를 활용하여 공간적으로 상세화된 토양 수분 지도를 작성하였고, 유역 내에서 실제 측정되고 있는 토양수분 관측값을 활용하여 상세화기법의 적용성을 검토하였다.
Southern Great Plain 1999 실험을 통하여 획득된 L-band와 C-band 토양수분 측정치의 공간 변화 양상을 분석하였다. L-band 토양수분 측정치의 스펙트럼은 관측 스케일의 변화와 함께 토양수분의 공간 변화 양상이 변화됨을 보여주었고, 이러한 변화 양상은 모래함유비와 같은 토양 특성의 공간 변화 양상과 일치함을 보여주었다. 그리고 C-band 토양수분 측정치의 공간 변화 양상은 관측 스케일의 변화와 상관없이 일정한 변화도를 가지는 것으로 나타났다. 이는 식생피복의 공간 변화 양상과 동일함을 보여주는 것이다. 이러한 결과는 AMSR기기를 이용하여 현재 진행되고 있는 토양수분의 전 지구 관측치의 downscaling시 고려되어야 할 것이다.
토양수분은 물 에너지 순환에서 지표면과 대기 사이의 복잡한 관계를 이해하기 위한 중요한 수문인자 중 하나이다. 일반적으로, 토양수분은 온도, 바람, 토성에 의한 증발과 식생에 의한 증산에 의하여 결정이 되는 것으로 알려져 있다. 하지만, 각 인자와 토양수분과의 관계에 대한 심도 있는 연구는 아직 부족한 실정이다. 본 연구에서는 Flux tower(설마천 타워)에서 생성되는 측정인자인 대기온도, 비습, 풍속을 고려하여 토양수분 예측치를 산정하였으며 이를 실측치와 비교하고 상관분석을 실시하였다. 토양수분은 특히 겨울에는 지중온도와 매우 강한 양의 상관계수를 가졌으나 이외의 항인 대기온도, 비습, 풍속과는 상관성이 낮게 산정되었다. 봄부터 가을까지의 자료에서는 지중온도가 토양수분과 매우 강한 음의 상관계수를 가지며 대기온도와 비습의 경우 상당한 음의 상관계수를 가지며 풍속은 식생의 영향으로 상관성이 매우 낮은 것으로 판단되었다. 중회귀분석을 통하여 계절별 토양수분을 추정하여 이를 측정값과 비교하였으며 결정계수($R^2$)는 봄의 경우 0.82, 여름의 경우 0.81, 가을의 경우 0.82, 겨울의 경우 0.96로 대체로 양호한 결과를 나타내었다. 본 연구에서 토양수분에 대한 지표상의 수문기상인자들과의 밀접한 상관관계는 공간해상도가 비교적 큰 원격탐사 토양수분의 downscaling에 유용한 정보를 제공할 수 있으며, 지표상의 물 에너지 순환에 대한 보다 나은 이해를 줄 것으로 사료된다.
가뭄은 산불을 일으킬 수 있는 요소 중 하나로, 산불의 빈도 및 피해 면적과 연관성이 있다. 특히, 우리나라는 가뭄이 주로 발생하는 건조한 봄과 가을에 산불이 많이 발생하고, 그 중 일부는 강풍을 동반하여 대형산불로 번지는 경향을 보인다. 따라서 본 연구에서는 우리나라를 대상으로 산불발생 및 면적과 가뭄 변수의 관련성을 파악하고, 우리나라에 적합한 가뭄 변수를 이용하여 산불발생위험 추정을 위한 위성기반의 가뭄지수를 개발하였다. 사용한 가뭄 변수는 다운스케일링(downscaling)한 고해상도의 토양수분, Normalized Different Water Index(NDWI), Normalized Multi-band Drought Index(NMDI), Normalized Different Drought Index(NDDI), Temperature Condition Index(TCI), Precipitation Condition Index(PCI), Vegetation Condition Index(VCI)이며, 경험적 가중 선형조합(Weighted Linear Combination) 및 One-class SVM을 통해 지수 개발을 하였다. 2013년부터 2017년 기간 동안의 변수를 이용하여 상관성 분석을 통해 대부분의 가뭄 변수가 산불 발생에 유의미한 결과를 보임을 확인했으며, 특히 토양수분과 NDWI, PCI가 우리나라 산불과 상관성을 보였다(88 % 이상 일치함). 개발된 지수를 2018년 산불 발생 건에 대해 적용한 결과, 다섯 가지의 선형조합 중에서 토양수분과 NDWI의 조합이 시 공간적으로 적합한 것으로 나타났으며, One-class SVM은 대형산불에 적합한 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.