• 제목/요약/키워드: soil moisture downscaling

검색결과 15건 처리시간 0.024초

Spatial Downscaling of AMSR2 Soil Moisture Content using Soil Texture and Field Measurements

  • Na, Sangil;Lee, Kyoungdo;Baek, Shinchul;Hong, Sukyoung
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.571-581
    • /
    • 2015
  • Soil moisture content is generally accepted as an important factor to understand the process of crop growth and is the basis of earth system models for analysis and prediction of the crop condition. To continuously monitor soil moisture changes at kilometer scale, it is demanded to create high resolution data from the current, several tens of kilometers. In this paper we described a downscaling method for Advanced Microwave Scanning Radiometer 2 (AMSR2) Soil Moisture Content (SMC) from 10 km to 30 m resolution using a soil texture and field measurements that have a high correlation with the SMC. As a result, the soil moisture variations of both data (before and after downscaling) were identical, and the Root Mean Square Error (RMSE) of SMC exhibited the low values. Also, time series analyses showed that three kinds of SMC data (field measurement, original AMSR2, and downscaled AMSR2) had very similar temporal variations. Our method can be applied to downscaling of other soil variables and can contribute to monitoring small-scale changes of soil moisture by providing high resolution data.

신경망기법과 보조 자료를 사용한 원격측정 토양수분자료의 Downscaling기법 개발 (Development a Downscaling Method of Remotely-Sensed Soil Moisture Data Using Neural Networks and Ancillary Data)

  • 김광섭;이을래
    • 한국수자원학회논문집
    • /
    • 제37권1호
    • /
    • pp.21-29
    • /
    • 2004
  • 국내에서 예상되는 물부족 현상을 극복하기 위해서는 수문 현상의 이해를 통한 수자원의 안정된 확보, 관리, 개발 등 수자원 관련 기술격의 발전이 필수적이라 하겠다. 물순환계통의 올바른 이해와 적합한 모형의 개발 및 검증을 위해서는 강우 및 토양수분의 대규모 원격측정이 필수적일 뿐 아니라 관측 격자 내에서 일어나는 변화도에 대한 이해가 필요하다. 가까운 장래에 예상되는 전구 관측 토양수분자료의 격자크기인 10km는 중ㆍ소규모 지역의 수문ㆍ기상모델 적용에 한계를 가진다. 목적에 따라 각 모델들이 필요로 하는 입력 자료의 격자크기가 다른 반면 각 모델에 대한 적합한 크기의 격자를 가진 다양한 입력 자료의 부재는 토양수분자료에 대한 적합한 downscaling 기법을 필요로 한다. 사용 가능한 보조 자료와 토양수분의 선형상관관계는 상당히 낮으므로 이들 상호관계를 선형관계의 합으로 나타내는데 한계를 가진다. 그러므로 본 연구에서는 physically-based 분리기법과 자료들 간의 비선형 상관관계를 나타내는데 적합한 신경망 기법을 이용한 downscaling 기법을 개발하였다. 개발된 downscaling 기법은 Washita'92 실험으로부터 획득된 토양수분 및 보조 자료를 사용하여 4km자료를 0.2km자료로 downscaling 하였으며 출력자료는 기존의 전형적 기법에 의하여 smoothing된 자료보다 개선된 결과를 보여주었다.

Ensemble Downscaling of Soil Moisture Data Using BMA and ATPRK

  • Youn, Youjeong;Kim, Kwangjin;Chung, Chu-Yong;Park, No-Wook;Lee, Yangwon
    • 대한원격탐사학회지
    • /
    • 제36권4호
    • /
    • pp.587-607
    • /
    • 2020
  • Soil moisture is essential information for meteorological and hydrological analyses. To date, many efforts have been made to achieve the two goals for soil moisture data, i.e., the improvement of accuracy and resolution, which is very challenging. We presented an ensemble downscaling method for quality improvement of gridded soil moisture data in terms of the accuracy and the spatial resolution by the integration of BMA (Bayesian model averaging) and ATPRK (area-to-point regression kriging). In the experiments, the BMA ensemble showed a 22% better accuracy than the data sets from ESA CCI (European Space Agency-Climate Change Initiative), ERA5 (ECMWF Reanalysis 5), and GLDAS (Global Land Data Assimilation System) in terms of RMSE (root mean square error). Also, the ATPRK downscaling could enhance the spatial resolution from 0.25° to 0.05° while preserving the improved accuracy and the spatial pattern of the BMA ensemble, without under- or over-estimation. The quality-improved data sets can contribute to a variety of local and regional applications related to soil moisture, such as agriculture, forest, hydrology, and meteorology. Because the ensemble downscaling method can be applied to the other land surface variables such as temperature, humidity, precipitation, and evapotranspiration, it can be a viable option to complement the accuracy and the spatial resolution of satellite images and numerical models.

SMAP 토양수분을 위한 Landsat 기반 상세화 기법 개발 (Development of Landsat-based Downscaling Algorithm for SMAP Soil Moisture Footprints)

  • 이태화;김상우;신용철
    • 한국농공학회논문집
    • /
    • 제60권4호
    • /
    • pp.49-54
    • /
    • 2018
  • With increasing satellite-based RS(Remotely Sensed) techniques, RS soil moisture footprints have been providing for various purposes at the spatio-temporal scales in hydrology, agriculture, etc. However, their coarse resolutions still limit the applicability of RS soil moisture to field regions. To overcome these drawbacks, the LDA(Landsat-based Downscaling Algorithm) was developed to downscale RS soil moisture footprints from the coarse- to finer-scales. LDA estimates Landsat-based soil moisture($30m{\times}30m$) values in a spatial domain, and then the weighting values based on the Landsat-based soil moisture estimates were derived at the finer-scale. Then, the coarse-scale RS soil moisture footprints can be downscaled based on the derived weighting values. The LW21(Little Washita) site in Oklahoma(USA) was selected to validate the LDA scheme. In-situ soil moisture data measured at the multiple sampling locations that can reprent the airborne sensing ESTAR(Electronically Scanned Thinned Array Radiometer, $800m{\times}800m$) scale were available at the LW21 site. LDA downscaled the ESTAR soil moisture products, and the downscaled values were validated with the in-situ measurements. The soil moisture values downscaled from ESTAR were identified well with the in-situ measurements, although uncertainties exist. Furthermore, the SMAP(Soil Moisture Active & Passive, $9km{\times}9km$) soil moisture products were downscaled by the LDA. Although the validation works have limitations at the SMAP scale, the downscaled soil moisture values can represent the land surface condition. Thus, the LDA scheme can downscale RS soil moisture products with easy application and be helpful for efficient water management plans in hydrology, agriculture, environment, etc. at field regions.

Downscaling을 이용한 고해상도 토양수분 지도 mapping 및 검증 (Mapping and Validation of High Resolution Soil Moisture Using Downscaling Method)

  • 허유미;최민하;김태웅;정성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.349-352
    • /
    • 2011
  • 토양수분은 지표와 대기에서 물과 에너지를 교환하는 중요한 수문기상 인자임에도 불구하고 토양수분에 대한 중요성이 부족한 실정이다. 최근에는 위성기술의 발달로 Aqua위성에 탑재된 Advanced Microwave Scanning Radiometer E (AMSR-E)를 이용하여 토양수분을 측정하고 있다. 이는 토양수분을 측정하고 있는 가장 유용한 기기로서 25km의 낮은 공간 해상도를 가지고 있어 토양수분의 변화를 나타내는데 한계점을 가지고 있다. 본 연구에서는 AMSR-E의 공간 해상도를 높이고자 비교적 높은 해상도를 (1km) 가지고 있는 Moderate Resolution Imaging Spectroradiometer (MODIS)를 연동하였으며, MODIS의 산출물 중 Albedo, LST, NDVI 인자를 이용하였다. 이를 바탕으로 1km의 고해상도 일 별 토양수분 지도를 작성하였으며, 이 지도를 각각 관측 토양수분과 비교 검증하였다. 향후 일별 고해상도 토양수분 지도를 작성하면 우리나라에 대한 토양수분 데이터베이스를 구축해 나갈 수 있을 것이다.

  • PDF

위성영상으로부터 산정된 토양수분자료의 상세화(Downscaling)기법 적용 및 고찰 (A study for spatial soil moisture downscaling method using MODIS satellite image)

  • 조형경;장선숙;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.31-31
    • /
    • 2015
  • 토양수분은 일반적으로 시료를 채취하거나 현장에 설치된 다양한 센서를 통해 추정하지만 이는 시간과 비용이 많이 소모되기 ?문에 유역내의 공간적인 토양수분 분포를 추정하는데 상당한 어려움이 따른다. 토양수분뿐만 아니라 공간적인 대기현상, 토양수분, 식생현황 등을 관측하는데 대중적으로 사용되는 것이 위성 관측이며, 기본적으로는 위성에 탑재된 센서가 각 주파수대역에 따라 영상을 생성하면 이를 특정 알고리듬을 적용하여 원하는 값을 도출하게 된다. 토양수분 산정에 사용되는 대표적인 위성영상으로는 SMOS (Soil Moisture and Ocean Salinity), ARMS-E(Advanced Microwave Scanning Radiometer - Earth Observing System), ARMS2 (ARMS ver.2) 영상 등이 있으며, 이러한 위성은 해상도가 약 10 km ~ 40 km로 상당이 낮기 때문에 우리나라와 같이 면적이 좁고 지형이 복잡하며 다양한 토지피복이 밀집되어있는 곳에서는 기존 수문 연구에 응용할 수 있는 토양수분 공간지도 산정을 위해 상세화(Downscaling)과정이 필요하다고 판단된다. 따라서 본 연구에서는 ARMS2 토양수분 영상을 MODIS 영상의 식생지수(NDVI, Normalized Difference Vegetation Index), 알베도 및 온도를 활용하여 공간적으로 상세화된 토양 수분 지도를 작성하였고, 유역 내에서 실제 측정되고 있는 토양수분 관측값을 활용하여 상세화기법의 적용성을 검토하였다.

  • PDF

PSR C-band 및 ESTAR L-band 측정치를 사용한 다중 채널 원격측정 토양수분 자료의 변화도 비교 (Comparison the Variability of Multi-channel Soil Moisture Data Using PSR C-band and ESTAR L-band Estimates)

  • 김광섭
    • 대한토목학회논문집
    • /
    • 제26권4B호
    • /
    • pp.329-334
    • /
    • 2006
  • Southern Great Plain 1999 실험을 통하여 획득된 L-band와 C-band 토양수분 측정치의 공간 변화 양상을 분석하였다. L-band 토양수분 측정치의 스펙트럼은 관측 스케일의 변화와 함께 토양수분의 공간 변화 양상이 변화됨을 보여주었고, 이러한 변화 양상은 모래함유비와 같은 토양 특성의 공간 변화 양상과 일치함을 보여주었다. 그리고 C-band 토양수분 측정치의 공간 변화 양상은 관측 스케일의 변화와 상관없이 일정한 변화도를 가지는 것으로 나타났다. 이는 식생피복의 공간 변화 양상과 동일함을 보여주는 것이다. 이러한 결과는 AMSR기기를 이용하여 현재 진행되고 있는 토양수분의 전 지구 관측치의 downscaling시 고려되어야 할 것이다.

수문기상자료를 이용한 설마천의 토양수분 예측 (Prediction of Soil Moisture using Hydrometeorological Data in Selmacheon)

  • 주제영;최민하;정성원;이승오
    • 대한토목학회논문집
    • /
    • 제30권5B호
    • /
    • pp.437-444
    • /
    • 2010
  • 토양수분은 물 에너지 순환에서 지표면과 대기 사이의 복잡한 관계를 이해하기 위한 중요한 수문인자 중 하나이다. 일반적으로, 토양수분은 온도, 바람, 토성에 의한 증발과 식생에 의한 증산에 의하여 결정이 되는 것으로 알려져 있다. 하지만, 각 인자와 토양수분과의 관계에 대한 심도 있는 연구는 아직 부족한 실정이다. 본 연구에서는 Flux tower(설마천 타워)에서 생성되는 측정인자인 대기온도, 비습, 풍속을 고려하여 토양수분 예측치를 산정하였으며 이를 실측치와 비교하고 상관분석을 실시하였다. 토양수분은 특히 겨울에는 지중온도와 매우 강한 양의 상관계수를 가졌으나 이외의 항인 대기온도, 비습, 풍속과는 상관성이 낮게 산정되었다. 봄부터 가을까지의 자료에서는 지중온도가 토양수분과 매우 강한 음의 상관계수를 가지며 대기온도와 비습의 경우 상당한 음의 상관계수를 가지며 풍속은 식생의 영향으로 상관성이 매우 낮은 것으로 판단되었다. 중회귀분석을 통하여 계절별 토양수분을 추정하여 이를 측정값과 비교하였으며 결정계수($R^2$)는 봄의 경우 0.82, 여름의 경우 0.81, 가을의 경우 0.82, 겨울의 경우 0.96로 대체로 양호한 결과를 나타내었다. 본 연구에서 토양수분에 대한 지표상의 수문기상인자들과의 밀접한 상관관계는 공간해상도가 비교적 큰 원격탐사 토양수분의 downscaling에 유용한 정보를 제공할 수 있으며, 지표상의 물 에너지 순환에 대한 보다 나은 이해를 줄 것으로 사료된다.

산불발생위험 추정을 위한 위성기반 가뭄지수 개발 (Development of Satellite-based Drought Indices for Assessing Wildfire Risk)

  • 박수민;손보경;임정호;이재세;이병두;권춘근
    • 대한원격탐사학회지
    • /
    • 제35권6_3호
    • /
    • pp.1285-1298
    • /
    • 2019
  • 가뭄은 산불을 일으킬 수 있는 요소 중 하나로, 산불의 빈도 및 피해 면적과 연관성이 있다. 특히, 우리나라는 가뭄이 주로 발생하는 건조한 봄과 가을에 산불이 많이 발생하고, 그 중 일부는 강풍을 동반하여 대형산불로 번지는 경향을 보인다. 따라서 본 연구에서는 우리나라를 대상으로 산불발생 및 면적과 가뭄 변수의 관련성을 파악하고, 우리나라에 적합한 가뭄 변수를 이용하여 산불발생위험 추정을 위한 위성기반의 가뭄지수를 개발하였다. 사용한 가뭄 변수는 다운스케일링(downscaling)한 고해상도의 토양수분, Normalized Different Water Index(NDWI), Normalized Multi-band Drought Index(NMDI), Normalized Different Drought Index(NDDI), Temperature Condition Index(TCI), Precipitation Condition Index(PCI), Vegetation Condition Index(VCI)이며, 경험적 가중 선형조합(Weighted Linear Combination) 및 One-class SVM을 통해 지수 개발을 하였다. 2013년부터 2017년 기간 동안의 변수를 이용하여 상관성 분석을 통해 대부분의 가뭄 변수가 산불 발생에 유의미한 결과를 보임을 확인했으며, 특히 토양수분과 NDWI, PCI가 우리나라 산불과 상관성을 보였다(88 % 이상 일치함). 개발된 지수를 2018년 산불 발생 건에 대해 적용한 결과, 다섯 가지의 선형조합 중에서 토양수분과 NDWI의 조합이 시 공간적으로 적합한 것으로 나타났으며, One-class SVM은 대형산불에 적합한 것으로 나타났다.