• 제목/요약/키워드: soil moisture data assimilation

검색결과 30건 처리시간 0.027초

Sentinel-1A/B SAR와 토양수분자료동화기법을 이용한 고해상도 토양수분 산정 (Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Soil Moisture Data Assimilation Scheme)

  • 김상우;이태화;천범석;정영훈;신용철
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.274-274
    • /
    • 2021
  • 토양수분은 가뭄, 홍수, 산불 및 산사태 등 자연재해 발생에 직간접적으로 영향을 미치기 때문에, 시·공간적으로 연속적인 토양수분 관측이 필요하다. 과거에는 TDR (Time Domain Reflectometry) 관측 장비를 설치하여 토양수분의 변화를 관측하였으나, 이러한 지점관측의 경우 하나의 관측지점에서 토양수분을 관측하기 때문에 공간적인 토양수분 변화를 나타내지 못한다. 최근 이러한 문제를 해결하기 위하여 인공위성 이미지 자료를 이용한 토양수분 산정에 관한 연구가 활발히 수행되고 있다. 그러나 SMOS (Soil Moisture and Ocean Salinity), SMAP (Soil Moisture Active Passive)와 같은 다양한 위성에서 관측된 토양수분은 낮은 공간해상도로 인한 불확실성이 커지는 단점이 있다. 최근 이러한 한계를 극복하기 위하여 광학위성영상과 달리 날씨의 영향을 받지 않으며 고해상도 이미지자료를 제공하는 Sentinel-1A/B 위성을 활용하여 토양수분을 관측하는 연구가 진행되고 있다. Sentinel-1은 10m의 높은 공간해상도를 제공하지만, 1~2주 주기로 영상취득이 가능하기 때문에 재방문시기와 같은 시간해상도 문제가 발생한다. 따라서 본 연구에서는 Sentinel-1A/B SAR 기반 후방산란계수와 농촌진흥청에서 제공하는 TDR 기반 토양수분 실측값을 이용하여 우리나라 토양수분 공간분포를 산정하였다. 산정된 Sentinel-1A/B 기반 토양수분과 토양수분자료동화기법을 연계하여 토양의 수리학적 매개변수를 추출하였으며, 추출된 매개변수와 기상자료를 이용하여 장기간(2001~2018) 일별 토양수분 공간분포를 산정하였다.

  • PDF

원격탐사자료 기반 유효토양특성 산정을 위한 토양수분자료동화기법 개발 (Development of Soil Moisture Data Assimilation Scheme for Predicting Effective Soil Characteristics Using Remotely Sensed Data)

  • 이태화;김상우;이상호;최경숙;신용철;임경재;박윤식
    • 한국농공학회논문집
    • /
    • 제60권1호
    • /
    • pp.21-30
    • /
    • 2018
  • In this study, we developed the Soil Moisture Data Assimilation (SMDA) scheme to extract Effective Soil Characteristics-ESC (Sand, Silt, Clay %) from MODerate resolution Imaging Spectroradiometer (MODIS) products. The SMDA scheme was applied to the MODIS-based Soil Moisture (SM) data during the summer (July to September) period. Then the ESC and soil erosion factors (K) were predicted, respectively. Several numerical experiments were conducted to test the performance of SMDA at the study sites under the synthetic and field validation conditions. In the synthetic experiment, the estimated soil moistures values(R: >0.990 and RMSE: <0.005) were identified well with the synthetic observations. The field validation results at the Bangdongri and Chungmicheon sites were also comparable to the TDR-based measurements with the statistics (R: 0.772/0.000 and RMSE: 0.065/0.000). The estimated ESC values were also matched well with the measurements for the synthetic and field validation conditions. Then we tested the SMDA scheme to extract the ESC from the MODIS-based soil moisture products. Although uncertainties exist in the results, the estimated soil moisture and ESC based on the SMDA were comparable to the measurements. Overall, the K factors were similarly distributed based on the derived ESC. Also, the K factors in the mountainous regions were higher than those of the relatively flat areas. Thus, the newly developed SMDA scheme can be useful to estimate spatially and temporally-distributed soil erosion and establish soil erosion management plans.

Ensemble Downscaling of Soil Moisture Data Using BMA and ATPRK

  • Youn, Youjeong;Kim, Kwangjin;Chung, Chu-Yong;Park, No-Wook;Lee, Yangwon
    • 대한원격탐사학회지
    • /
    • 제36권4호
    • /
    • pp.587-607
    • /
    • 2020
  • Soil moisture is essential information for meteorological and hydrological analyses. To date, many efforts have been made to achieve the two goals for soil moisture data, i.e., the improvement of accuracy and resolution, which is very challenging. We presented an ensemble downscaling method for quality improvement of gridded soil moisture data in terms of the accuracy and the spatial resolution by the integration of BMA (Bayesian model averaging) and ATPRK (area-to-point regression kriging). In the experiments, the BMA ensemble showed a 22% better accuracy than the data sets from ESA CCI (European Space Agency-Climate Change Initiative), ERA5 (ECMWF Reanalysis 5), and GLDAS (Global Land Data Assimilation System) in terms of RMSE (root mean square error). Also, the ATPRK downscaling could enhance the spatial resolution from 0.25° to 0.05° while preserving the improved accuracy and the spatial pattern of the BMA ensemble, without under- or over-estimation. The quality-improved data sets can contribute to a variety of local and regional applications related to soil moisture, such as agriculture, forest, hydrology, and meteorology. Because the ensemble downscaling method can be applied to the other land surface variables such as temperature, humidity, precipitation, and evapotranspiration, it can be a viable option to complement the accuracy and the spatial resolution of satellite images and numerical models.

수문기상 데이터 세트를 이용한 KLDAS(Korea Land Data Assimilation System)의 토양수분·증발산량 산출 (Calculation of Soil Moisture and Evapotranspiration for KLDAS(Korea Land Data Assimilation System) using Hydrometeorological Data Set)

  • 박광하;이경태;계창우;유완식;황의호;강도혁
    • 한국지리정보학회지
    • /
    • 제24권4호
    • /
    • pp.65-81
    • /
    • 2021
  • 본 연구에서는 LIS(Land Information System)를 기반으로 구축된 K-LIS(Korea-Land surface Information System)의 KLDAS(Korea Land Data Assimilation System)를 사용하여 남한 전역을 대상으로 토양수분 및 증발산량을 산출하였다. K-LIS를 구동하고, KLDAS를 구축하기 위해 사용된 수문기상 데이터 세트는 MERRA-2(Modern-Era Retrospective analysis for Research and Applications, version 2), GDAS(Global Data Assimilation System) 그리고 종관기상관측(ASOS, Automated Synoptic Observing System) 자료이다. ASOS는 지점 자료이므로 KLDAS에 적용하기 위해 0.125°의 공간해상도를 가진 격자형 자료로 변환하였다(ASOS-S, ASOS-Spatial). KLDAS에 적용된 수문기상 데이터 세트를 지상관측자료(ASOS)와 비교한 결과 ASOS-S, MERRA-2, GDAS의 R2 평균은 각각 온도(0.994, 0.967, 0.975), 기압(0.995, 0.940, 0.942), 습도(0.993, 0.895, 0.915), 강우량(0.897, 0.682, 0.695)으로 분석되었다. 또한, 토양수분의 R2 평균은 ASOS-S(0.493), MERRA-2(0.56), GDAS(0.488)이며, 증발산량의 R2 평균은 ASOS-S(0.473), MERRA-2(0.43), GDAS(0.615)로 분석되었다. MERRA-2, GDAS는 다수의 위성 및 지상관측자료를 활용하여 품질관리된 데이터 세트인 반면, ASOS-S는 103개 지점의 관측자료를 사용한 격자 자료이다. 따라서, 관측자료간 거리 차이로 인한 오차가 발생하여 정확도가 낮아진 것으로 판단되며, 향후 ASOS보다 많은 지점의 관측자료를 확보하여 적용한다면 격자화로 인한 오차가 줄어들어 정확도가 높아질 것으로 판단된다.

제주도에서의 위성기반 증발산량 및 토양수분 적용성 평가 (Evaluation of satellite-based evapotranspiration and soil moisture data applicability in Jeju Island)

  • 전현호;조성근;정일문;최민하
    • 한국수자원학회논문집
    • /
    • 제54권10호
    • /
    • pp.835-848
    • /
    • 2021
  • 제주도는 지질 및 수문계의 특이성으로 인해 수문기상인자 분석을 통한 수문 분석 및 효율적인 물관리가 필수적이다. 하지만 수문기상인자의 지상관측자료는 주변 환경에 의한 영향이 크게 작용하여 공간적인 대표성을 띄기 힘들며, 이를 극복하기 위해 원격탐사 방법이 사용된다. 본 연구에서는 제주도에서 기존에 다른 지역들에서 적용성이 검증된 바 있는 MOD16 증발산량, Global Land Data Assimilation System (GLDAS) 증발산량, GLDAS 토양수분, Advanced SCATerometer(ASCAT) 토양수분 산출물들의 적용성을 평가하였다. 증발산의 경우 강수량과의 총량 비교 및 플럭스타워 증발산량 관측자료와의 비교를 시행하였고, 토양수분의 경우 6개 토양수분 관측소의 관측자료와 비교하였다. 그 결과 증발산량의 경우 연 강수량의 57%가 증발산량으로 산출되었고, MOD16 증발산량과 GLDAS 증발산량의 상관계수는 0.759로 양호한 값이 산출되었으나, 플럭스타워 증발산량 데이터와 MOD16 증발산량의 상관계수는 0.289, GLDAS 증발산량과의 상관계수는 0.434로 상대적으로 적합성이 낮게 나타났다. 토양수분의 경우 GLDAS 자료의 경우 모든 지점에서 지점자료와 비교하였을 때 RMSE 값은 0.05 미만의 값을 나타냈고, 상관계수의 유의성 검정 결과 통계적으로 유의미한 결과를 얻었다. 하지만 위성자료의 경우 월각지점에서 0.05 이상의 RMSE 값이 나타났고, 세화, 한동 지점에서 상관성이 없다는 상관계수의 유의성 검정 결과를 확인하였다. 이는 제주도에 설치된 증발산량 및 토양수분 센서의 품질관리 및 공간대표성을 띄는 면단위 센서가 충분히 제공되지 않아 위와 같은 결과가 나타나는 것으로 판단된며 더불어 지점 자료의 관리 및 위성, 재분석 자료의 경우 관측 픽셀이 해안과 인접할 시 나타나는 오차로 추정된다. 본 연구를 통해 기존 수문기상인자 지상관측 자료의 개선 필요성을 역셜하고, 이를 통해 제주도에서의 효율적인 물관리 를 위한 기반을 구축하고자 한다.

인공위성 기반 TRMM/GPM 강우 이미지를 이용한 농업 가뭄 평가: 충청북도 지역을 중심으로 (Assessment of Agricultural Drought Using Satellite-based TRMM/GPM Precipitation Images: At the Province of Chungcheongbuk-do)

  • 이태화;김상우;정영훈;신용철
    • 한국농공학회논문집
    • /
    • 제60권4호
    • /
    • pp.73-82
    • /
    • 2018
  • In this study, we assessed meteorological and agricultural drought based on the SPI(Standardized Precipitation Index), SMP(Soil Moisture Percentile), and SMDI(Soil Moisture Deficit Index) indices using satellite-based TRMM(Tropical Rainfall Measuring Mission)/GPM(Global Precipitation Measurement) images at the province of Chungcheongbuk-do. The long-term(2000-2015) TRMM/GPM precipitation data were used to estimate the SPI values. Then, we estimated the spatially-/temporally-distributed soil moisture values based on the near-surface soil moisture data assimilation scheme using the TRMM/GPM and MODIS(MODerate resolution Imaging Spectroradiometer) images. Overall, the SPI value was significantly affected by the precipitation at the study region, while both the precipitation and land surface condition have influences on the SMP and SMDI values. But the SMP index showed the relatively extreme wet/dry conditions compared to SPI and SMDI, because SMP only calculates the percentage of current wetness condition without considering the impacts of past wetness condition. Considering that different drought indices have their own advantages and disadvantages, the SMDI index could be useful for evaluating agricultural drought and establishing efficient water management plans.

지상관측 기상자료를 적용한 KLDAS(Korea Land Data Assimilation System)의 토양수분·증발산량 산출 (Calculation of Soil Moisture and Evapotranspiration of KLDAS applying Ground-Observed Meteorological Data)

  • 박광하;계창우;이경태;유완식;황의호;강도혁
    • 대한원격탐사학회지
    • /
    • 제37권6_1호
    • /
    • pp.1611-1623
    • /
    • 2021
  • 본 연구에서는 K-LIS(Korea-Land surface Information System)의 KLDAS(Korea Land Data Assimilation System)를 사용하여 LSM의 초기 경계조건 최적화를 위해 스핀업(Spin-up)을 진행하였고다. 스핀업은 2018년을 대상으로 8회 반복 수행하였다. 또한, 국내 기상청(KMA, Korea Meteorological Administration), 농촌진흥청(RDA, Rural Development Administration), 한국농어촌공사(KRC, Korea Rural Community Corporation), 한국수력원자력(KHNP, Korea Hydro & Nuclear Power Co., Ltd.), 한국수자원공사(K-water, Korea Water Resources Corporation), 환경부(ME, Ministry of Environment) 등에서 관측하고 있는 기상자료를 사용하여 저해상도(K-Low, Korea Low spatial resolution; 0.125°) 및 고해상도(K-High, Korea High spatial resolution; 0.01°)의 기상자료를 생성하여 KLDAS에 적용하였다. 그리고, K-Low 및 K-High의 정확도 향상 정도를 확인하기 위해 선행 연구에서 사용된 MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, version 2)와 ASOS-S(ASOS-Spatial)가 적용된 토양수분 및 증발산량을 같이 평가하였다. 그 결과, 초기 경계조건의 최적화는 토양수분의 경우 2회(58개 지점), 3회(6개 지점), 6회(3개 지점)의 스핀업이 필요하고, 증발산량의 경우 1회(2개 지점), 2회(2개 지점)의 스핀업이 필요하다. MERRA-2, ASOS-S, K-Low, K-High을 적용한 토양수분의 경우 R2의 평균은 각각 0.615, 0.601, 0.594, 0.664이고, 증발산량의 경우 R2의 평균은 각각 0.531, 0.495, 0.656, 0.677로 K-High의 정확도가 가장 높은 것으로 평가되었다. 본 연구 결과를 통해 다수의 지상 관측자료를 확보하고 고해상도의 격자형 기상자료를 생성하면 KLDAS의 정확도를 높일 수 있다. 다만, 지점 자료를 격자로 변환할 때 각 지점의 기상현상이 충분히 고려되지 않으면 정확도는 오히려 낮아진다. 향후 IDW의 매개변수 설정 또는 다른 보간기법을 사용하여 격자형 기상자료를 생성하여 적용하면 보다 높은 품질의 자료를 산출할 수 있을 것으로 판단된다.

마코프 체인 몬테카를로 및 앙상블 칼만필터와 연계된 추계학적 단순 수문분할모형 (Stochastic Simple Hydrologic Partitioning Model Associated with Markov Chain Monte Carlo and Ensemble Kalman Filter)

  • 최정현;이옥정;원정은;김상단
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.353-363
    • /
    • 2020
  • Hydrologic models can be classified into two types: those for understanding physical processes and those for predicting hydrologic quantities. This study deals with how to use the model to predict today's stream flow based on the system's knowledge of yesterday's state and the model parameters. In this regard, for the model to generate accurate predictions, the uncertainty of the parameters and appropriate estimates of the state variables are required. In this study, a relatively simple hydrologic partitioning model is proposed that can explicitly implement the hydrologic partitioning process, and the posterior distribution of the parameters of the proposed model is estimated using the Markov chain Monte Carlo approach. Further, the application method of the ensemble Kalman filter is proposed for updating the normalized soil moisture, which is the state variable of the model, by linking the information on the posterior distribution of the parameters and by assimilating the observed steam flow data. The stochastically and recursively estimated stream flows using the data assimilation technique revealed better representation of the observed data than the stream flows predicted using the deterministic model. Therefore, the ensemble Kalman filter in conjunction with the Markov chain Monte Carlo approach could be a reliable and effective method for forecasting daily stream flow, and it could also be a suitable method for routinely updating and monitoring the watershed-averaged soil moisture.

국립기상과학원 플럭스 관측 자료 기반의 JULES 지면 모델 모의 성능 분석 (Evaluation of JULES Land Surface Model Based on In-Situ Data of NIMS Flux Sites)

  • 김혜리;홍제우;임윤진;홍진규;신승숙;김윤재
    • 대기
    • /
    • 제29권4호
    • /
    • pp.355-365
    • /
    • 2019
  • Based on in-situ monitoring data produced by National Institute of Meteorological Sciences, we evaluated the performance of Joint UK Land Environment Simulator (JULES) on the surface energy balance for rice-paddy and cropland in Korea with the operational ancillary data used for Unified Model (UM) Local Data Assimilation and Prediction System (LDAPS) (CTL) and the high-resolution ancillary data from external sources (EXP). For these experiments, we employed the one-year (March 2015~February 2016) observations of eddy-covariance fluxes and soil moisture contents from a double-cropping rice-paddy in BoSeong and a cropland in AnDong. On the rice-paddy site the model performed better in the CTL experiment except for the sensible heat flux, and the latent heat flux was underestimated in both of experiments which can be inferred that the model represents flood-irrigated surface poorly. On the cropland site the model performance of the EXP experiment was worse than that of CTL experiment related to unrealistic surface type fractions. The pattern of the modeled soil moisture was similar to the observation but more variable in time. Our results shed a light on that 1) the improvement of land scheme for the flood-irrigated rice-paddy and 2) the construction of appropriate high-resolution ancillary data should be considered in the future research.

앙상블 칼만필터를 연계한 추계학적 연속형 저류함수모형 (I) : - 모형 개발 - (Stochastic Continuous Storage Function Model with Ensemble Kalman Filtering (I) : Model Development)

  • 배덕효;이병주
    • 한국수자원학회논문집
    • /
    • 제42권11호
    • /
    • pp.953-961
    • /
    • 2009
  • 본 연구의 목적은 현재 국내 홍수예경보 시스템의 유출해석모형으로 이용되고 있으며 단일 호우사상에 대해 적용이 가능한 유역 및 하도 저류함수모형을 추계학적 연속형 저류함수모형으로 개발하고자 하는데 있다. 이를 위해 기존 저류함수모형에 토양수분 산정 컴포넌트를 추가하고 지표면유출, 중간유출, 지하수유출 및 실제증발산량을 토양수분의 함수로 나타내어 각 수문성분에 대한 연속적인 모의가 가능하도록 하였다. 또한 실시간 관측유량자료 동화를 위해 앙상블 칼만 필터 기법을 도입하여 확정론적 모형을 추계학적 모형으로 개선하였다. 따라서 본 연구에서 개발된 추계학적 연속형 저류함수모형은 장기간의 연속적인 유출해석이 가능할 뿐만 아니라 관측자료 동화를 통해 기존 저류함수 모형보다 신뢰성 있는 결과를 제시할 수 있을 것으로 판단된다.