• Title/Summary/Keyword: soil moisture balance

Search Result 97, Processing Time 0.024 seconds

THE PHYSICALLY-BASED SOIL MOISTURE BALANCE MODEL DEVELOPMENT AND APPLICATIONS ON PADDY FIELDS

  • Park, Jae-Young;Lee, Jae-Hyoung
    • Water Engineering Research
    • /
    • v.1 no.3
    • /
    • pp.243-256
    • /
    • 2000
  • This physically-based hydrologic model is developed to calculate the soil-moisture balance on paddy fields. This model consists of three modules; the first is the unsaturated module, the second is the rice evapotranspiration module with SPAC(soil-plant-atmospheric-continuum), and the third is the groundwater and open channel flows based upon the interrehtionship module. The model simulates the hydrlogical processes of infiltration, soil water storage, deep perocolation or echarge to the shallow water table, transpiration and evaporation from the soil surface and also the interrelationship of the groundwater and river flow exchange. To verify the applicability of the developed model, it was applied to the Kimjae Plains, located in the center of the Dongjin river basin in Korea, during the most serious drought season of 1994. The result shows that the estimated water net requirement was 757mm and the water deficit was about 5.9% in this area in 1994. This model can easily evaluate the irrigated water quantity and visualize the common crop demands and soil moisture conditions.

  • PDF

Assessment of Upland Drought Using Soil Moisture Based on the Water Balance Analysis (물수지 기반 지역별 토양수분을 활용한 밭가뭄 평가)

  • Jeon, Min-Gi;Nam, Won-Ho;Yang, Mi-Hye;Mun, Young-Sik;Hong, Eun-Mi;Ok, Jung-Hun;Hwang, Seonah;Hur, Seung-Oh
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.1-11
    • /
    • 2021
  • Soil moisture plays a critical role in hydrological processes, land-atmosphere interactions and climate variability. It can limit vegetation growth as well as infiltration of rainfall and therefore very important for agriculture sector and food protection. Recently, due to the increased damage from drought caused by climate change, there is a frequent occurrence of shortage of agricultural water, making it difficult to supply and manage stable agricultural water. Efficient water management is necessary to reduce drought damage, and soil moisture management is important in case of upland crops. In this study, soil moisture was calculated based on the water balance model, and the suitability of soil moisture data was verified through the application. The regional soil moisture was calculated based on the meteorological data collected by the meteorological station, and applied the Runs theory. We analyzed the spatiotemporal variability of soil moisture and drought impacts, and analyzed the correlation between actual drought impacts and drought damage through correlation analysis of Standardized Precipitation Index (SPI). The soil moisture steadily decreased and increased until the rainy season, while the drought size steadily increased and decreased until the rainy season. The regional magnitude of the drought was large in Gyeonggi-do and Gyeongsang-do, and in winter, severe drought occurred in areas of Gangwon-do. As a result of comparative analysis with actual drought events, it was confirmed that there is a high correlation with SPI by each time scale drought events with a correlation coefficient.

ESTIMATION OF SOIL MOISTURE WITH AIRBORNE L-BAND MICROWAVE RADIOMETER

  • Chang, Tzu-Yin;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.26-28
    • /
    • 2008
  • Soil moisture plays an important role in the land-atmosphere energy balance because it governs the partitioning of energy through latent heat fluxes or evapotranspiration. From the numerous studies, it is evident that the L-band radiometer is a useful and effective tool to measure soil moisture. The objective of the study is to develop and to verify the soil moisture retrieval algorithms for the L-band radiometer system. Through the radiometer-observed brightness temperature, surface emissivity and reflectivity can be derived, and, hence, soil moisture. We collect field and L-band airborne radiometer data from washita92, SGP97 and SGP99 experiments to assist the development of the retrieval algorithms. Upon launching the satellite L-band radiometer such as ESA-sponsored SMOS (Soil Moisture and Ocean Salinity) mission, the developed algorithms may be used to study and monitor globe soil moisture change.

  • PDF

The Estimation of Water Balance at Regional Upland According to RCP8.5 Scenario from 2011 to 2020

  • Shin, Kook-Sik;Cho, Hyun-Sook;Seong, Ki-Young;Park, Tae-Seon;Kang, Hang-Won;Seo, Myung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • In order to evaluate water balance at upland according to RCP8.5 climate change scenario distributed by Korean Meteorological Administration (KMA), we simulated soil moisture using estimation model, called AFKAE0.5 for 66 sites from 2011 to 2020, and established the water balance maps. The amount of annual average precipitation by RCP8.5 scenario was highest in 2016 as recorded 2,062 mm and lowest in 2011 with 1,134 mm. As result of analysis for monthly precipitation and runoff, the amounts of precipitation and runoff have been especially intensive in July in 2014, 2016, 2019, and 2020. Overall, the area of Kyeongbuk and Gyeonggi was estimated more dried status of soil compared with precipitation. Except 2015 and 2020, soil water balance was recorded as negative value in other years which was calculated by subtracting output from input. The status of soil moisture was the most dry in 2020 among those in other years.

The Response of soil surface heat budget to the precipitation (지표면 열수지의 강수응답성에 관한 연구)

  • 황수진;진병화
    • Journal of Environmental Science International
    • /
    • v.3 no.2
    • /
    • pp.89-100
    • /
    • 1994
  • It is very important to assess accurately the terms which are included in the heat budget equation of soil surface because they are used in the UM and miso-scale circulation modeling as well as in the micrometeorological studies. Each terms in the heat budget equation change according to the soil moisture content. So, it is necessary to specify clearly the relations between soil moisture content and these terms. Special experiment with micrometeorological measurements was executed to study these relations at Environmental Research Center of Tsukuba University, Japan. The results are as follow: 1. The soil moisture contents of 1 cm and 4 cm depth are oscillated with one day Period in drying process and the amplitude of variation of 1 cm depth is greater than that of 4 cm. 2. Increase in soil moisture contents due to precipitation result in decrease of albedo with step function. 3. Sensible heat is in reverse proportion to the soil moisture content and latent heat is in direct proportion to it. Latent heat is more sensitive than sensible heat according to the soil moisture variation. Net long wave radiation have high correlation with soil moisture. 4. Comparing with the radiative term with the flux term in wetting process due to precipitation, the energy transfer of the aero and thermodynamic flux is greater than that of the radiative heat flux.

  • PDF

Water Balance-based Farmland Suitability for Southern-type Garlic Cultivation (난지형 마늘의 농업수리학적 재배적지 분류)

  • Kim, Yong Wan;Hong, Suk Young;Kim, Yi Hyun;Jang, Min Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.19-28
    • /
    • 2012
  • This study carried out farmland suitability analysis for southern-type garlic cultivation considering soil and temperature as well as water deficit conditions. The spatial extent was limited within the area derived by Kim et al. (2012) using just soil and temperature constraints. Daily soil moisture was simulated using a one-layer soil water balance model at a $100{\times}100m$ grid unit, and then annual water deficit was calculated from 2000 to 2010. The farmland suitability was classified as four steps: best suitable, suitable, possible, and low productive. As a result, total area of best suitable or suitable farmland was about 375,900 ha, and Gimje-si and Haenam-gun were appeared as the largest favorable area for southern-type garlic cultivation. The best suitable or suitable area at Haenam-gun, Goheung-gun, Shinan-gun, Namhae-gun, and Muan-gun, major production regions of southern-type garlic, were extracted as 20,187 ha, 13,018 ha, 4,715 ha, 1,319 ha, and 349 ha, respectively. On the other hand, the result showed that the adoption of sprinkler irrigation systems might be critical in cultivating the southern-type garlic at some regions having poor water balance.

Research Status of Satellite-based Evapotranspiration and Soil Moisture Estimations in South Korea (위성기반 증발산량 및 토양수분량 산정 국내 연구동향)

  • Choi, Ga-young;Cho, Younghyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1141-1180
    • /
    • 2022
  • The application of satellite imageries has increased in the field of hydrology and water resources in recent years. However, challenges have been encountered on obtaining accurate evapotranspiration and soil moisture. Therefore, present researches have emphasized the necessity to obtain estimations of satellite-based evapotranspiration and soil moisture with related development researches. In this study, we presented the research status in Korea by investigating the current trends and methodologies for evapotranspiration and soil moisture. As a result of examining the detailed methodologies, we have ascertained that, in general, evapotranspiration is estimated using Energy balance models, such as Surface Energy Balance Algorithm for Land (SEBAL) and Mapping Evapotranspiration with Internalized Calibration (METRIC). In addition, Penman-Monteith and Priestley-Taylor equations are also used to estimate evapotranspiration. In the case of soil moisture, in general, active (AMSR-E, AMSR2, MIRAS, and SMAP) and passive (ASCAT and SAR)sensors are used for estimation. In terms of statistics, deep learning, as well as linear regression equations and artificial neural networks, are used for estimating these parameters. There were a number of research cases in which various indices were calculated using satellite-based data and applied to the characterization of drought. In some cases, hydrological cycle factors of evapotranspiration and soil moisture were calculated based on the Land Surface Model (LSM). Through this process, by comparing, reviewing, and presenting major detailed methodologies, we intend to use these references in related research, and lay the foundation for the advancement of researches on the calculation of satellite-based hydrological cycle data in the future.

Estimation of Irrigation Requirements for Red Pepper using Soil Moisture Model with High Resolution Meteorological Data (고해상도 기상자료와 토양수분모형을 이용한 고추의 관개량 산정)

  • Shin, Yong-Hoon;Choi, Jin-Yong;Lee, Seung-Jae;Lee, Sung-Hack
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.31-40
    • /
    • 2017
  • The aim of this study is to estimate net irrigation requirements for red pepper during growing period using soil moisture model. The soil moisture model based on water balance approach simulates soil moisture contents of 4 soil layers in crop root zone considering soil moisture extraction pattern. The LAMP (Land-Atmosphere Modeling Package) high resolution meteorological data provided from National Center for AgroMeteorology (NCAM) was used to simulate soil moisture as the input weather data. Study area for the LAMP data and soil moisture simulation covers $36.92^{\circ}{\sim}37.40^{\circ}$ in latitude and $127.36^{\circ}{\sim}127.94^{\circ}$ in longitude. Soil moisture was monitored using FDR (Frequency Domain Reflectometry) sensors and the data were used to validate the simulation model from May 24 to October 20 in 2016. The results showed spatially detailed soil moisture pattern under different weather conditions and soil texture. Net irrigation requirements were also different by location reflecting the spatially distributed weather condition. The average of the requirements was 470.7 mm and averages about soil texture were 466.8 mm, 482.4 mm, 456.0 mm, 481.7 mm, and 465.6 mm for clay loam, sandy loam, silty clay loam, clay, and sand respectively. This study showed spatial differences of soil moisture and the irrigation requirements of red pepper about spatially uneven weather condition and soil texture. From the results, it was demonstrated that high resolution meteorological data could provide an opportunity of spatially different crop water requirement estimation during the irrigation management.

Agricultural Drought Analysis using Soil Water Balance Model and Geographic Information System (지리정보시스템과 토양수분모형을 이용한 농업가뭄분석)

  • 배승종
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.6
    • /
    • pp.33-43
    • /
    • 1999
  • Drought is a serious diaster in agriculutre, especially to upland crops. Hence, the Agricultural Drought Analysis Model (ADAM) that is integratable with GIS was applied to analyae agriculture drought in upland. ADAM is composed of two sub-models , one is a Soil Water Balance Model (SWBM) and the other is a Drougth Analysis Model (DAM) that is based on the Runs theory. The ADAM needs weather data, rainfall data and soil physical characteristics data as input and calculates daily soil moisture contents. GIS was integrated to the ADAM for the calculation of regional soil moisture using digitized landuse map, detaile dsoil map, thiessen network and district boundary . For the agriculutral drought analysis, the ADAM adapt the Runs theory for analyzing drought duration, severity and magnitude . Log-Pearson Type-III probability distribution function and Kolmogorov-Smirnov test were used to test the fitness of good of the model. The integration of ADAM with GIS was successfully implemented and would be operated effectively for the regional drought analysis.

  • PDF

Watershed Scale Drought Assessment using Soil Moisture Index (토양수분지수를 이용한 유역단위 가뭄 평가)

  • Kim, Ok-Kyoung;Choi, Jin-Yong;Jang, Min-Won;Yoo, Seung-Hwan;Nam, Won-Ho;Lee, Joo-Heon;Noh, Jae-Kyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.3-13
    • /
    • 2006
  • Although the drought impacts are comparably not catastrophic, the results from the drought are fatal in various social and economical aspects. Different from other natural hazards including floods, drought advances slowly and spreads widely, so that the preparedness is quite important and effective to mitigate the impacts from drought. Soil moisture depletion directly resulted from rainfall shortage is highly related with drought, especially for crops and vegetations, therefore a drought can be evaluated using soil moisture conditions. In this study, SMI (Soil Moisture Index) was developed to measure a drought condition using soil moisture model and frequency analysis for return periods. Runs theory was applied to quantify the soil moisture depletions for the drought condition in terms of severity, magnitude and duration. In 1994, 1995, 2000, and 2001, Korea had experienced several severe droughts, so the SMI developed was applied to evaluate applicability in the mid-range hydrologic unit watershed scale. From the results, SMI demonstrated the drought conditions with a quite sensitive manner and can be used as an indicator to measure a drought condition.