• 제목/요약/키워드: soil modelling

검색결과 200건 처리시간 0.029초

Study on the behaviour of pre-existing single piles to adjacent shield tunnelling by considering the changes in the tunnel face pressures and the locations of the pile tips

  • Jeon, Young-Jin;Jeon, Seung-Chan;Jeon, Sang-Joon;Lee, Cheol-Ju
    • Geomechanics and Engineering
    • /
    • 제21권2호
    • /
    • pp.187-200
    • /
    • 2020
  • In the current work, a series of three-dimensional finite element analyses have been conducted to investigate the behaviour of pre-existing single piles in response to adjacent tunnelling by considering the tunnel face pressures and the relative locations of the pile tips with respect to the tunnel. Via numerical modelling, the effect of the face pressures on the pile behaviour has been analysed. In addition, the analyses have concentrated on the ground settlements, the pile head settlements and the shear stress transfer mechanism at the pile-soil interface. The settlements of the pile directly above the tunnel crown (with a vertical distance between the pile tip and the tunnel crown of 0.25D, where D is the tunnel diameter) with a face pressure of 50% of the in situ horizontal soil stress at the tunnel springline decreased by approximately 38% compared to the corresponding pile settlements with the minimum face pressure, namely, 25% of the in situ horizontal soil stress at the tunnel springline. Furthermore, the smaller the face pressure is, the larger the tunnelling-induced ground movements, the axial pile forces and the interface shear stresses. The ground settlements and the pile settlements were heavily affected by the face pressures and the positions of the pile tip with respect to the tunnel. When the piles were inside the tunnel influence zone, tensile forces were induced on piles, while compressive pile forces were expected to develop for piles that are outside the influence zone and on the boundary. In addition, the computed results have been compared with relevant previous studies that were reported in the literature. The behaviour of the piles that is triggered by adjacent tunnelling has been extensively examined and analysed by considering the several key features in substantial detail.

Simplified modelling of continous buried pipelines subject to earthquake fault rupture

  • Paolucci, Roberto;Griffini, Stefano;Mariani, Stefano
    • Earthquakes and Structures
    • /
    • 제1권3호
    • /
    • pp.253-267
    • /
    • 2010
  • A novel simple approach is presented for the seismic analysis of continuous buried pipelines subject to fault ruptures. The method is based on the minimization of the total dissipated energy during faulting, taking into account the basic factors that affect the problem, namely: a) the pipe yielding under axial and bending load, through the formation of plastic hinges and axial slip; b) the longitudinal friction across the pipe-soil interface; c) the lateral resistance of soil. The advantages and drawbacks of the proposed method are highlighted through a comparison with previous approaches, as well as with finite element calculations accounting for the 3D kinematics of the pipe-soil-fault systems under large deformations. Parametric analyses are also provided to assess the relative influence of the various parameters affecting the problem.

Nonlinear interaction analysis of infilled frame-foundation beam-homogeneous soil system

  • Hora, M.S.
    • Coupled systems mechanics
    • /
    • 제3권3호
    • /
    • pp.267-289
    • /
    • 2014
  • A proper physical modeling of infilled building frame-foundation beam-soil mass interaction system is needed to predict more realistic and accurate structural behavior under static vertical loading. This is achieved via finite element method considering the superstructure, foundation and soil mass as a single integral compatible structural unit. The physical modelling is achieved via use of finite element method, which requires the use of variety of isoparametric elements with different degrees of freedom. The unbounded domain of the soil mass has been discretized with coupled finite-infinite elements to achieve computational economy. The nonlinearity of soil mass plays an important role in the redistribution of forces in the superstructure. The nonlinear behaviour of the soil mass is modeled using hyperbolic model. The incremental-iterative nonlinear solution algorithm has been adopted for carrying out the nonlinear elastic interaction analysis of a two-bay two-storey infilled building frame. The frame and the infill have been considered to behave in linear elastic manner, whereas the subsoil in nonlinear elastic manner. In this paper, the computational methodology adopted for nonlinear soil-structure interaction analysis of infilled frame-foundation-soil system has been presented.

Effect of raft and pile stiffness on seismic response of soil-piled raft-structure system

  • Saha, Rajib;Dutta, Sekhar C.;Haldar, Sumanta
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.161-189
    • /
    • 2015
  • Soil-pile raft-structure interaction is recognized as a significant phenomenon which influences the seismic behaviour of structures. Soil structure interaction (SSI) has been extensively used to analyze the response of superstructure and piled raft through various modelling and analysis techniques. Major drawback of previous study is that overall interaction among entire soil-pile raft-superstructure system considering highlighting the change in design forces of various components in structure has not been explicitly addressed. A recent study addressed this issue in a broad sense, exhibiting the possibility of increase in pile shear due to SSI. However, in this context, relative stiffness of raft and that of pile with respect to soil and length of pile plays an important role in regulating this effect. In this paper, effect of relative stiffness of piled raft and soil along with other parameters is studied using a simplified model incorporating pile-soil raft and superstructure interaction in very soft, soft and moderately stiff soil. It is observed that pile head shear may significantly increase if the relative stiffness of raft and pile increases and furthermore stiffer pile group has a stronger effect. Outcome of this study may provide insight towards the rational seismic design of piles.

수치 모사를 활용한 수평 혹은 경사형 특수 정호 지하수 흐름 특성 평가 (Characterization of Groundwater Flow to Horizontal or Slanted Well Using Numerical Modeling)

  • 김형수
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제13권2호
    • /
    • pp.54-61
    • /
    • 2008
  • 수평 혹은 경사 형태 특수 정호 양수량에 대한 시공간적 수위 강하를 지하수 수치 모델링을 활용하여, 평가하였다. 지하수 수치 모델링은 상용 프로그램인 FEFLOW(version 5.1)의 1차원 선형 불연속 특징 요소를 활용하여 수행되었으며, 수치해의 검증을 위해 Zhan과 Zlotnik(2002)이 제안한 연속된 점 형태 배출원 배열 방식 준 해석해와 비교하였다. 비교 검증 결과, 수치해와 준해석해는 최대 수위 강하가 나타나는 양수 최인접부를 제외하고는 거의 일치한 형태를 보여주었다. 검증된 수치적 방법을 이용하여, 강변여과 방식 취수가 검토되는 현장에 대한 수위강하를 정량적으로 평가할 수 있었다.

Reviewing the Applications of Three Countries' Ground Water Flow Modeling Regulatory Guidelines to Nuclear Facilities in Korea

  • Lee, Chung-Mo;Hamm, Se-Yeong;Hyun, Seung Gyu;Cheong, Jae-Yeol;Wei, Ming Liang
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권3호
    • /
    • pp.1-9
    • /
    • 2017
  • The numerical analysis of groundwater flow is indispensable for predicting problems associated with water resource development, civil works, environmental hazards, and nuclear power plant construction. Korea lacks public regulatory procedures and guidelines for groundwater flow modeling, especially in nuclear facility sites, which makes adequate evaluation difficult. Feasible step-by-step guidelines are also unavailable. Consequently, reports on groundwater flow modeling have low-grade quality and often present controversial opinions. Additionally, without public guidelines, maintaining consistency in reviewing reports and enforcing laws is more challenging. In this study, the guidelines for groundwater flow modeling were reviewed for three countries - the United States (Documenting Groundwater Modeling at Sites Contaminated with Radioactive Substances), Canada (Guidelines for Groundwater Modelling to Assess Impacts of Proposed Natural Resource Development Activities), and Australia (Australian Groundwater Modelling Guidelines), with the aim of developing groundwater flow modeling regulatory guidelines that can be applied to nuclear facilities in Korea, in accordance with the Groundwater Act, Environmental Impact Assessment Act, and the Nuclear Safety Act.

APPLICATION OF QUICKBIRD SATELLITE IMAGE TO STORM RUNOFF MODELLING

  • Kim, Sang-Ho;Lee, Mi-Seon;Park, Geun-Ae;Hong, Suk-Young;Choi, Chul-Uong;Kim, Seong-Joon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.602-605
    • /
    • 2006
  • This study is to apply QuickBird satellite image for the simulation of storm runoff in a small rural watershed. For a 1.05 $km^2$ watershed located in Goesan-Gun of Chungbuk Province, the land use from the QuickBird image was produced by on-screening digitising after ortho-rectifying using 2 m DEM. For 3 cases of land use, soil and elevation scale (1:5,000, 1:25,000 and 1:50,000), SCS (Soil Conservation Service)-CN (Curve Number) and the watershed physical parameters were prepared for the storm runoff model, HEC-HMS (Hydrological Modelling System). The model was evaluated for each case and compared the simulated results with couple of selected storm events.

  • PDF

2차원 모델화된 연약지반의 비선형 압밀해석시 이용되는 모델변수 추정을 위한 최적화기법 (Optimization Technique for Parameter Estimation used in 2-Dimensional Modelling of Nonlinear Consolidation Analysis of Soft Deposits)

  • 김윤태;이승래
    • 한국지반공학회지:지반
    • /
    • 제13권1호
    • /
    • pp.47-58
    • /
    • 1997
  • 지반계수와 지반형상에 포함된 불확실성 뿐만아니라 근사적인 수치모델링에 기인하여 현장 연약지반에 대하여 예측된 거동과 실제로 계측된 거동은 매우 상이한 경우가 많다. 이러한 예측 결과를 개선하기 위하여 본 논문에서는 다음사항을 고려하였다. 계측치로부터 현장지반의 물성치를 보다 적절히 추정하기 위하여 최적화 기법이 적용되었으며, 3차원 거동효과를 효과적으로 고려하기 위하여 등가의 모델이 적용되었다. 지반의 압밀과정에 영향을 주는 수정 Carnflay모델의 지반계수값을 현장에서 계측된 침하량과 간극수압을 바탕으로 BFGS기법을 적용하여 최적화하였으며, 최적화 기법은 일반적인 압밀 해석 프로그램인 SPINED에 적용되었다. 제안된 프로그램을 사용하여 연약지반의 시간의존적인 압밀거동을 적절히 예측할 수 있다.

  • PDF

과재하중이 있는 Unpropped Diaphragm Wall의 변위양상에 관한 원심모델링 (Centrifugal Modelling on the Displacement Mode of Unpropped Diaphragm Wall with Surcharge)

  • 허열;이처근;안광국
    • 한국지반공학회논문집
    • /
    • 제20권8호
    • /
    • pp.135-145
    • /
    • 2004
  • 본 연구에서는 화강풍화토 지반상 unpropped diaphragm wall의 거동을 연구하기 위하여 과재하중의 이격거리를 변화시키면서 원심모형실험을 수행하였다. 원심모형실험시 지반굴착은 흙과 동일한 밀도로 혼합된 zinc chloride 용액이 배수되도록 밸브를 조작하여 실시하였으며, 굴착에 따라 발생하는 지반의 변형과 벽체의 변위 및 휨모멘트를 측정하였다. 수치해석은 대부분의 지반공학 문제에 적용할 수 있는 FLAC 프로그램을 이용하였다. 수치해석에서 모형지반은 Mohr-Coulomb 모델, diaphragm wall은 탄성모델을 사용하여 2차원 평면변형률 조건으로 해석을 수행하였다. 모형실험 결과 파괴면의 직선적인 형태로 파괴면내의 배면측 지반은 벽체를 향하여 하향의 변위를 일으키면서 벽체의 회전에 의해 파괴되었으며, 파괴면의 각도는 67∼74$^{\circ}$정도로 이론적인 파괴면의 각도보다 크게 평가되었다. 실험 및 해석 결과 지반의 최대침하량이 발생하는 위치는 잘 일치하였으며, 깊이에 따른 벽체변위는 선형적인 관계를 나타내었다.

Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.85-107
    • /
    • 2012
  • The building frame and its foundation along with the soil on which it rests, together constitute a complete structural system. In the conventional analysis, a structure is analysed as an independent frame assuming unyielding supports and the interactive response of soil-foundation is disregarded. This kind of analysis does not provide realistic behaviour and sometimes may cause failure of the structure. Also, the conventional analysis considers infill wall as non-structural elements and ignores its interaction with the bounding frame. In fact, the infill wall provides lateral stiffness and thus plays vital role in resisting the seismic forces. Thus, it is essential to consider its effect especially in case of high rise buildings. In the present research work the building frame, infill wall, isolated column footings (open foundation) and soil mass are considered to act as a single integral compatible structural unit to predict the nonlinear interaction behaviour of the composite system under seismic forces. The coupled isoparametric finite-infinite elements have been used for modelling of the interaction system. The material of the frame, infill and column footings has been assumed to follow perfectly linear elastic relationship whereas the well known hyperbolic soil model is used to account for the nonlinearity of the soil mass.