• Title/Summary/Keyword: soil map

Search Result 563, Processing Time 0.029 seconds

The selection of soil erosion source area of Dechung basin (대청호유역의 토사유실 원인지역 선정)

  • Lee, Geun-Sang;Hwang, Eui-Ho;Koh, Deuk-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1997-2002
    • /
    • 2007
  • This study selected soil erosion source area of Dechung basin by soil erosion estimation model and field survey for effective soil conservation planning and management. First, unit soil erosion amount of Dechung basin is analyzed using RUSLE (Revised Universal Soil Loss Equation) model based on DEM (Digital Elevation Model), soil map, landcover map and rainfall data. Soil erosion model is difficult to analyze the tracing route of soil particle and to consider the characteristics of bank condition and the types of crop, multidirectional field survey is necessary to choice the soil erosion source area. As the result of analysis of modeling value and field survey, Mujunamde-, Wondang-, Geumpyong stream are selected in the soil erosion source area of Dechung basin. Especially, these areas show steep slope in river boundary and cultivation condition of crop is also weakness to soil erosion in the field survey.

  • PDF

Statistically estimated storage potential of organic carbon by its association with clay content for Korean upland subsoil

  • Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Seo, Mi-Jin;Sonn, Yeon-Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.353-359
    • /
    • 2016
  • Soil organic carbon (SOC) retention has gradually gotten attention due to the need for mitigation of increased atmospheric carbon dioxide and the simultaneous increase in crop productivity. We estimated the statistical maximum value of soil organic carbon (SOC) fixed by clay content using the Korean detailed soil map database. Clay content is a major factor determining SOC of subsoil because it influences the vertical mobility and adsorption capacity of dissolved organic matter. We selected 1,912 soil data of B and C horizons from 13 soil series, Sangju, Jigog, Jungdong, Bonryang, Anryong, Banho, Baegsan, Daegog, Yeongog, Bugog, Weongog, Gopyeong, and Bancheon, mainly distributed in Korean upland. The ranges of SOC and clay content were $0-40g\;kg^{-1}$ and 0 - 60%, respectively. Soils having more than 25% clay content had much lower SOC in subsoil than topsoil, probably due to low vertical mobility of dissolved organic carbon. The statistical analysis of SOC storage potential of upland subsoil, performed using 90%, 95%, and 99% maximum values in cumulative SOC frequency distribution in a range of clay content, revealed that these results could be applicable to soils with 1% - 25% of clay content. The 90% SOC maximum values, closest to the inflection point, at 5%, 10%, 15%, and 25% of clay contents were $7g\;kg^{-1}$, $10g\;kg^{-1}$, $12g\;kg^{-1}$, and $13g\;kg^{-1}$, respectively. We expect that the statistical analysis of SOC maximum values for different clay contents could contribute to quantifying the soil carbon sink capacity of Korean upland soils.

Application of a weight-of-evidence model to landslide susceptibility analysis Boeun, Korea

  • Moung-Jin, Lee;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.65-70
    • /
    • 2003
  • The weight-of-evidence model one of the Bayesian probability model was applied to the task of evaluating landslide susceptibility using GIS. Using the location of the landslides and spatial database such as topography, soil, forest, geology, land use and lineament, the weight-of-evidence model was applied to calculate each factor's rating at Boun area in Korea where suffered substantial landslide damage fellowing heavy rain in 1998, The factors are slope, aspect and curvature from the topographic database, soil texture, soil material, soil drainage, soil effective thickness, and topographic type from the soil database, forest type, timber diameter, timber age and forest density from the forest map, lithology from the geological database, land use from Landsat TM satellite image and lineament from IRS satellite image. Tests of conditional independence were performed for the selection of the factors, allowing the 43 combinations of factors to be analyzed. For the analysis, the contrast value, W$\^$+/and W$\^$-/, as each factor's rating, were overlaid to map laudslide susceptibility. The results of the analysis were validated using the observed landslide locations, and among the combinations, the combination of slope, curvature, topographic, timber diameter, geology and lineament show the best results. The results can be used for hazard prevention and planning land use and construction

  • PDF

Integration of GIS with USLE in Assessment of Soil Erosion due to Typoon Rusa (태풍 루사에 의한 토양 침식량 산정을 위한 GIS와 범용토양손실공식(USLE) 연계)

  • Hahm, Chang-Hahk;Kim, Byung-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.77-85
    • /
    • 2007
  • Assessment of soil erosion is a cost and time-consuming task. There are many models developed to predict soil erosion from an area, but Universal Soil Loss Equation (USLE) is most widely used empirical equation for estimating annual soil erosion. Soil erosion depends upon-rainfall intensity, type of soil, land cover and land use, slope degree, slope length and soil conservation practice. All these parameters are have spatial distribution and hence satellite remote sensing and Geographic Information System (GIS) are applicable in the assessment of the influence on soil erosion. GIS has been integrated with the USLE (Universal Soil Loss Equation) model in identification of rainfall-based erosion to the Bocheong River which is the representative basin of IHP due to Typhoon Rusa. Similar studies are available in literature, ranging from those that use a simple model such as USLE to others of a more sophisticated nature.

  • PDF

New Flood Hazard Mapping using Runoff Mechanism on Gamcheon Watershed (유출메커니즘을 활용한 감천유역에서의 새로운 홍수위험지도 작성)

  • Kim, Tae Hyung;Han, Kun Yeun;Park, Jun Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1011-1021
    • /
    • 2016
  • This study performs the potential flood hazard analysis by applying elevation data, soil data and land use data. The susceptibility maps linked to elevation, soil and land use are combined to develop the new types of flood hazard map such as runoff production map and runoff accumulation map. For the development of the runoff production map, land use, soil thickness, permeability, soil erosion and slope data are used as runoff indices. For the runoff accumulation map, elevation, knick point and lowland analysis data are used. To derive an integrated type of flood potential hazard, a TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) technique, which is widely applied in MCDM (Multi-Criteria Decision Making) process, is adopted. The indices applied to the runoff production and accumulation maps are considered as criteria, and the cells of analysis area are considered as alternatives for TOPSIS technique. The model is applied to Gamcheon watershed to evaluate the flood potential hazards. Validation with large scale data shows the good agreements between historical data and runoff accumulation data. The analysis procedure presented in this study will contribute to make preliminary flood hazard map for the public information and for finding flood mitigation measures in the watershed.

The Integration of GIS with LANDSAT TM Data for Groundwater Potential Area Mapping(II) - Suitablility Mapping for Groundwater Exploration Using the Geographic Infornation System - (지하수 부존 가능지역 추출을 위한 LANDSAT TM 자료와 GIS의 통합(II) - 지하정보시스템에 의한 지하수 부존 가능성의 suitability map 작성 -)

  • 지광훈
    • Korean Journal of Remote Sensing
    • /
    • v.8 no.1
    • /
    • pp.45-58
    • /
    • 1992
  • The study is aimed at extraction of the groundwater potential area using the Geographic Information System. The study was to develop techniques of the thematic mapping such as slope map, geologic map, soil map and suitability mapping for grotential area. There thematic maps were combined and weightages were given to produce suitability map for groundwater potential area. The results of this study are as follows. 1) The 78% of cased wells have releation to lineament coincided with the appraisement point of the suitability map. 2) The 9 sites of 18 test sites produced over than 200 m$^3$/day. The with the highest appraisement point of the suitability map. 3) Suitability map is effective to extract groundwater potential area which can not be extracted from the remotely sensed data. The developed suitability mapping techniques are expected to do as an important tool for exploration and development of the newable and unnewable resources such as groundwater, petroleum etc.

Analysis of land use change for advancing national greenhouse gas inventory using land cover map: focus on Sejong City

  • Park, Seong-Jin;Lee, Chul-Woo;Kim, Seong-Heon;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.933-940
    • /
    • 2020
  • Land-use change matrix data is important for calculating the LULUCF (land use, land use change and forestry) sector of the national greenhouse gas inventory. In this study, land cover changes in 2004 and 2019 were compared using the Wall-to-Wall technique with a land cover map of Sejong City from the Ministry of Environment. Sejong City was classified into six land use classes according to the Intergovernmental Panel on Climate Change (IPCC) guidelines: Forest land, crop land, grassland, wetland, settlement and other land. The coordinate system of the land cover maps of 2004 and 2019 were harmonized and the land use was reclassified. The results indicate that during the 15 years from 2004 to 2019 forestlands and croplands decreased from 50.4% (234.2 ㎢) and 34.6% (161.0 ㎢) to 43.4% (201.7 ㎢) and 20.7% (96.2 ㎢), respectively, while Settlement and Other land area increased significantly from 8.9% (41.1 ㎢) and 1.4% (6.9 ㎢) to 35.6% (119.0 ㎢) and 6.5% (30.3 ㎢). 79.㎢ of cropland area (96.2 ㎢) in 2019 was maintained as cropland, and 8.8 ㎢, 1.7 ㎢, 0.5 ㎢, 5.4 ㎢, and 0.4 ㎢ were converted from forestland, grassland, wetland, and settlement, respectively. This research, however, is subject to several limitations. The uncertainty of the land use change matrix when using the wall-to-wall technique depends on the accuracy of the utilized land cover map. Also, the land cover maps have different resolutions and different classification criteria for each production period. Despite these limitations, creating a land use change matrix using the Wall-to-Wall technique with a Land cover map has great advantages of saving time and money.

Evaluation of GIS-based Soil Loss Amount in Considering Basin Characteristics (유역특성을 고려한 GIS 기반 토양침식량 평가)

  • Guak Dong-Wook;Cho Gi-Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.89-97
    • /
    • 2006
  • Soil erosion has caused serious environmental problems which threaten the foundation of natural resources. In this paper, we chose RUSLE erosion model, which could be connected easily with GSIS and available generally in mid-scale watershed among soil erosion models, and extracted factors entered model by using GSIS spatial analysis method. First, this study used GIS database as soil map, DEM, land cover map and rainfall data of typhoon Memi (2003) to analyze soil loss amount of Dam basin. To analyze the changes of soil loss in considering basin characteristics as up-, mid- and downstream, this study calculated soil erodibility factor (K), topographic factors (LS), and cover management factor (C). As a result of analysis, K and LS factors of upstream showed much higher than those of downstream because of the high ratio of forest. But C factor of downstream showed much higher than that of upstream because of the high ratio of agricultural area. As a result of analysis of soil loss, unit soil loss of upstream is 4.3 times than soil loss of downstream. Therefore, the establishment of countermeasures for upstream is more efficient to reduce soil loss.

The Environmental Change of Korea based on the Isopollen Map during the Holocene

  • Yoon, Soon-Ock
    • The Korean Journal of Quaternary Research
    • /
    • v.22 no.2
    • /
    • pp.6-11
    • /
    • 2008
  • Vegetation change reconstructed by pollen analysis is effective to clarify natural conditions such as climate and soil as well as intensity of human activity. Pollen analysis in Korea is difficult to obtain peaty soil sedimented by low relief geomorphollogically and formation age is usually confined to obtain information during young Holocene as well as little absolute age data. Isopollen map was constructed in order to analyze the change of vegetation environment time-spatially during Holocene based on the 30 data with age dated from 78 results from pollen analysis in Korea. The indicatives for vegetation environment were the main trees in Korea such as Alnus, Pinus, Quercus and AP/NAP during the periods of 6,000 y.BP, 4,000 y.BP, 3,000 y.BP, 2,000 y.BP, 1,000 y.BP. As a result, the regional time-spatial patterns of vegetation distribution appeared clearly on the isopollen map. The dominant vegetation stage was repeated in the different pattern e.g. the dominance between Alnus and Quercus at West Coast and between Pinus and Quercus at East Coast competitively.

  • PDF

Analysis of Regional Geologic Hazards Using Geographic Information System (GIS(Geographic Information System)를 이용한 광역 지질재해(산사태) 분석 연구)

  • 김윤종;김원영;유일현;박수홍;백종학;이현우
    • Korean Journal of Remote Sensing
    • /
    • v.7 no.2
    • /
    • pp.165-178
    • /
    • 1991
  • A geologic hazard map has been produced in the suburbs of Seoul using GIS technology to analyse the degree of geologic hazard, particularly landslides. Topographic, geologic and soil data were incorporated in a map through GIS, which enable to interpret, analyse and predict the regional geologic hazards. Potential elements causing a landslide are slope geometry, geology, groundwater table, soil property, rainfall and vegetation etc. These elements analysed in the study area were input into GIS system through cartographic simulation to produce the regional geologic hazard map. For this work, ARC/INFO(GIS) and ERDAS(IP) system were used.