• Title/Summary/Keyword: soil leaching

Search Result 487, Processing Time 0.024 seconds

Distribution and Leaching of Basal Nitrogen in Direct Seeding Rice on Dry Paddy (벼 건답직파 재배에서 기비질소의 토층간 분포와 용탈)

  • 한상준;이호진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.752-758
    • /
    • 1997
  • Urea, which is the major nitrogenous fertilizer used in Korea, has been used inefficiently in direct-seeding on dry soil by farmers. This study was conducted to investigate changes in concentrations of basal N within soil layers and its loss during early stage of rice growth. Urea fertilizer was applied in the rates of 7, 5.25, 3.5, 1.75, 0kg- N /10a under direct-seeded rice in dry paddy soil. The concentrations of ammonium and nitrate were determined in soil samples with different depths during period from seeding to the 3rd leaf stage. Futhermore, N leaching was measured in lysimeter designed with pot in greenhouse. ${NH_4}^+ \; and\; {NO_3}^-$ adsorption by soil increased with increasing concentration of added urea and decreased as deeper in soil layers. ${NH_4}^+$ concentration reached its peak at 7 days after urea application (DAA) and disappeared almostly at 14 DAA. ${NO_3}^-$ reached its peak at 10 DAA and decreased slowly until 14 DAA. ${NO_3}^-$N leaching started next day after urea application and completed until 11 DAA. We concluded that most of basal N applied to direct-seeded paddy was lost by leaching and not useful for rice plant which was in stage of germination. It is urgent need to develop new nitrogen application method for direct-seeding rice on dry soil.

  • PDF

Leaching characteristics of the bipyridylium herbicide paraquat in soil column (토양 column 중 bipyridylium계 제초제 paraquat의 용탈 특성)

  • Kwon, Jeong-Wook;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.2
    • /
    • pp.29-36
    • /
    • 1999
  • The leaching behaviour of $^{14}C$-paraquat in soil was investigated using soil columns (5 cm I.D. ${\times}$ 30 cm H.) parked with two soils of different physicochemical properties. $^{14}C$-Activities leached from the soil A (loam) columns with and without rice plants for 117 days were 0.42 and 0.54% of the originally applied, whereas those from the soil B (sandy loam) were 0.21 and 0.31%, respectively. $^{14}C$-Activities absorbed by rice plants from soil A and B were 3.87 and 2.79%, respectively, most of which remained in the root. Irrespective of soil types, more than 96% of the total $^{14}C$ resided in soil, mostly in the depth of $0{\sim}5$ cm. The water-extractable $^{14}C$ in soil was in the range of $6.10{\sim}9.01%$ of the total $^{14}C$ applied. The rest of $^{14}C$, which corresponds to non-extractable soil residues of [$^{14}C$]paraquat, was distributed in humic substances in the decreasing order of humin>humic acid>fulvic acid. The soil pH of the columns without rice plants increased after the leaching experiment due to the flooded anaerobic condition resulting in the reduction of the $H^{+}$ concentration, whereas that of the columns with rice plants did not increase by the offsetting effect of the acidic exudates from the roots. Low mobility of paraquat in soil strongly indicates that no contamination of ground water would be caused by paraquat residues in paddy soils under normal precipitation.

  • PDF

Compaction and Leaching Characteristics of the Light Weight Soil Used Recycled Styrofoam Beads and Disposal soils (폐 Styrofoam 혼합토의 다짐 및 용출 특성)

  • Shin, Bang-Woong;Lee, Bong-Jik;Lee, Jong-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.61-70
    • /
    • 2002
  • This paper presents the engineering property of light weight soil made of soil mixed with recycled Styrofoam and stabilizer. Recycled Styrofoam is widely used for lightweight fill material because it has important geotechnical characteristics which are light, adiabatic, and effective for vibration interception. It is very easy to get the disposal styrofoam. For this study, dynamic compaction test, static compaction test and pH and leaching tests were performed. Based on the test results, it is concluded that the static compaction method is recommened to prevent from crushing materials and pH values of embankment materials are satisfied with these of domestic and RCRA configuration.

  • PDF

Experimental Study for Irrigation Water Requrements in the Reclaimed Paddy Field (간척답의 관개용수량 산정을 위한 제염시험연구)

  • 손재권;구자웅;최진규;송재도
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.192-199
    • /
    • 1999
  • In order to make the reasonable irrigation planin the reclaimed paddy fields, the estimation of irrigation water requirements by soil textures and water management methods for the normal growth of crops is very important. This study was carried out to determine leaching water requirements before cultivating crops. For the purposes of this study, the physical and chemical properties of soil sampels used in the desalinication experiments were analyzed and change of salinity by supplying water and leaching water were investigated in the experimental field with lysimeters.

  • PDF

Leaching of Soil Cations by Simulated Acid Rains of Different Compositions (구성성분이 다른 인공산성비에 의한 토양의 양이온 용탈에 관한 연구)

  • Ryu, Kwan-Shig;Min, Tai-Gi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.407-413
    • /
    • 1998
  • The influence of the anion composition of simulated acid rain on cation leaching of two soils with different surface charge properties was examined. Four mixtures of mole ratio of $SO_4:NO_3$(1:0, 2:1, 1:1, 0:1) with pH 2.0 simulated acid rain were applied to an Inceptisols(Gyuam series) and Andisols(Pyeongdae series). The Andisols had higher $SO_4{^{2-}}$ adsorption capacity than the Inceptisols because of its higher point of zero charge(PZC, pH 6.5) than Inceptisols(PZC pH 3.1). Cation leaching in Andisols varied directly with the $NO_3$ content of the leaching input due to higher mobility of $NO_3$ compared with $SO_4$ that was absorbed. The pH of the Andisols was higher with the addition of $Na_2SO_4$ than the addition of $NaNO_3$ indicating that this soil behaves as a base and has a high $SO_4$ adsorption capacity. The relative $NO_3{^-}/SO_4{^{2-}}$ content input had no effect on cation leaching of the Inceptisols. Amounts of leaching on the Andisols by simulated acid rain were higher than Inceptisols. This experiment explained that anion composition of acid rain plays a significant role in the cation leaching of soils which are able to adsorb $SO_4$.

  • PDF

Evaluation of Leaching Potential of Heavy Metals from Bottom Ashes Generated in Coal-fired Power Plants in Korea (국내 석탄 화력발전소 배출 바닥재의 중금속 용출 가능성 평가)

  • Park, Dongwon;Choi, Hanna;Woo, Nam C.;Kim, Heejoung;Chung, David
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.32-40
    • /
    • 2013
  • This study was objected to evaluate the potential impact on the groundwater environment of the coal bottom ash used as fill materials on the land surface. From four coal-fired power plants, bottom-ashes were collected and analyzed through sequential extraction and column leaching tests following the meteoric water mobility procedure. The column tests shown leaching heavy metals including Pb, As, B, Cu, Zn, Mn, Ni, Ba, Sr, Sb, V, Cr, Mo, and Hg. The relatively high concentrations of B, Sr, Ba, and V in leachate were attributed to both the higher concentrations in the bottom ash and the relatively higher portion of leachable state, sorbed state, of metals. Bottom-ash samples from the D-plant only show high leaching potential of sulfate ($SO_4$), probably originated from the coal-combustion process, called the Fluidized Bed Combustion. Consequently, to manage recycling bottom ashes as fill materials, an evaluation system should be implemented to test the leaching potentials of metals from the ashes considering the absolute amount of metals and their state of existence in ashes, and the coal-combustion process.

Nutrient Uptake and Leaching Under Different Fertilizer Treatment for Corn and Potato Growth in Volcanic Ash Soil (화산회토에서 옥수수와 감자의 시비처리에 따른 양분 흡수 및 용탈)

  • 강봉균;박양문;강영길
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.3
    • /
    • pp.253-259
    • /
    • 2001
  • The purpose of this study was loused on understanding of uptake of nutrients by plants, the behaviors of nutrients in soil and the possibility of leaching loss when N fertilizer (urea) and mature compost were applied. Lysimeters (volume 0.15㎥, diameter 62cm, height 62.8cm) were installed for collecting leachate in the Jeju volcanic ash soils. Lysimeter study consisted of thirteen treatments: fellow, fellow with weeding, cropping without fertilizer and compost, three N fertilizer soil surface applications (16, 32, and 64 kg/10a), three N fertilizer and compost soil surface applications (16+800i 32+1600, and 64+3200 kg/10a), two water dissolved N fertilizer applications(16 and 32 kg/10a), and low and high plant densities. The growth of corn (preceding crop) and potatoes (succeeding crop) and leaching loss were determined during the experimental period. The amount of leachate from lysimeter was remarkably greater at bare conditions than at cropping conditions for corn and potatoes. The N content of plants (corn and potatoes) tended to increase as fertilizer rate increased. Fertilization of urea dissolved in water to soil was more efficient than surface fertilization for the growth, yield, and the N uptake N of corn and potatoes. There were no differences in dry matter yield of plants between medium and high N rates, but N, Ca, K and Mg concentrations of plants were higher at higher N rates. There were significant correlations between N uptake and each of Ca, K and Mg uptakes in corn and potatoes. Total N uptake by plants increased with increased N fertilizer and compost applications. Plane absorbed 54.9% of applied N at low N rate and 31.0 to 34.0% at high N rates. The proportion of N leaching losses was lower at low N rate and high plant density.

  • PDF

Leaching of Arsenic in Soils Amended with Crushed Arsenopyrite Rock

  • Lee, Kyosuk;Shim, Hoyoung;Lee, Dongsung;Yang, Jae E.;Chung, Dougyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.113-119
    • /
    • 2014
  • Arsenic and its compounds which is one of the most toxic elements that can be found naturally on earth in small concentrations are used in the production of pesticides, herbicides, and insecticides. Most arsenic that cannot be mobilized easily when it is immobile is also found in conjunction with sulfur in minerals such as arsenopyrite (AsFeS), realgar, orpiment and enargite. In this investigation we observed the leaching of arsenic in soils amended with several levels of gravel size of arsenopyrite collected from a road construction site. Soil and gravel size of arsenopyrite were characterized by chemical and mineralogical analyses. Results of XRF analysis of arsenopyrite indicated that the proportion of arsenate was 0.075% (wt $wt^{-1}$) while the maximum amount of arsenic in soil samples was 251.3 mg $kg^{-1}$. Cumulative amounts of effluent collected from the bottom of the soil column for different mixing rate of the gravel were gradually increased where proportion of the gravel mixed was greater than 70% whereas the effluent was stabilized to the maximum after approximately 45 pore volumes of effluent or greater were collected. The arsenic in the effluent was recovered from the soil columns in which the proportion of arsenopyrite gravel was 60% or greater. The total amount of arsenic recovered as effluent was increased with increasing proportion of gravel in a soil, indicating that the arsenic in the effluent was closely related with gravel fraction of arsenopyrite.

Evaluation for Contents of Contaminants and Leaching Characteristics of Bottom Ash (바텀애쉬의 유해물질 함량 측정 및 용출특성 평가연구)

  • Koh, Taehoon;Lee, Sungjin;Shin, Minho;Kim, Byongsuk;Lee, Jeakeun;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.77-83
    • /
    • 2010
  • In this study, we tried to determine any detrimental effects on water quality when bottom ash obtained from a coal-fired power plant intended to be used as a fill material in construction sites. Physical-chemical properties of bottom ash were determined using proximate analysis, elemental analysis, XRD, and XRF. Classification of bottom ash as a waste material and soil contamination due to the use of bottom ash were performed by Korea waste standard leaching test and soil toxicity test, respectively. Results of leaching tests were compared to the regulations for water quality and groundwater quality and no harmful effects on water quality were found. Most of heavy metals in leachate were below detection limits but trace amount of $Cr^{6+}$ was found. However, concentration of $Cr^{6+}$ was below the regulation criteria. Column leaching tests indicated that concentrations of Pb and Zn were slightly higher than regulations but below regulations within 1 PVE, but concentrations of sulfate were 10 times higher than regulation and thus, the required time to reach regulation was almost 8 PVE.

Behavior of Synthetic Pyrethroid Insecticide Bifenthrin in Soil Environment II) Identification of Degradation Product and Leaching of Bifenthrin in soil (합성 Pyrethroid 계 살충제인 Bifenthrin의 토양환경중 동태 제2보. Bifenthrin의 토양중 분해산물의 동정 및 용탈)

  • Kim, Jang-Eok;Choi, Tae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.2
    • /
    • pp.125-132
    • /
    • 1992
  • This study was conducted to know degradation products of the synthetic pyrethroid insecticide bifenthrin under soil, aqueous solution and UV-light irradation, and know its movement by leaching in soil. The major degradation product of bifenthrin was identified with 2-methylbiphenyl -3-y1 methanol by HPLC, UV, Mass and NMR under soil, aqueous solution and UV-light irradiation, The main degradation route was hydrolysis of the ester linkage. On exposure to UV-light, bifenthrin was decomposed almost completely in concentrations of 10 and 100 ppm in 24 hr but decomposed about 80% in 1,000 ppm. Bifenthrin was immobile in soil column system and on soil thin-layer chromatography system. Mostly bifenthrin remained in the 0-2.0㎝ layer of soil column and soil TLC.

  • PDF