• Title/Summary/Keyword: soil height

Search Result 1,494, Processing Time 0.032 seconds

Effects of pile geometry on bearing capacity of open-ended piles driven into sands

  • Kumara, Janaka J.;Kurashina, Takashi;Kikuchi, Yoshiaki
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.385-400
    • /
    • 2016
  • Bearing capacity of open-ended piles depends largely on inner frictional resistance, which is influenced by the degree of soil plugging. While a fully-plugged open-ended pile produces a bearing capacity similar to a closed-ended pile, fully coring (or unplugged) pile produces a much smaller bearing capacity. In general, open-ended piles are driven under partially-plugged mode. The formation of soil plug may depend on many factors, including wall thickness at the pile tip (or inner pile diameter), sleeve height of the thickened wall at the pile tip and relative density. In this paper, we studied the effects of wall thickness at the pile base and sleeve height of the thickened wall at the pile tip on bearing capacity using laboratory model tests. The tests were conducted on a medium dense sandy ground. The model piles with different tip thicknesses and sleeve heights of thickened wall at the pile tip were tested. The results were also discussed using the incremental filling ratio and plug length ratio, which are generally used to describe the degree of soil plugging. The results showed that the bearing capacity increases with tip thickness. The bearing capacity of piles of smaller sleeve length (e.g., ${\leq}1D$; D is pile outer diameter) was found to be dependent on the sleeve length, while it is independent on the sleeve length of greater than a 1D length. We also found that the soil plug height is dependent on wall thickness at the pile base. The results on the incremental filling ratio revealed that the thinner walled piles produce higher degree of soil plugging at greater penetration depths. The results also revealed that the soil plug height is dependent on sleeve length of up to 2D length and independent beyond a 2D length. The piles of a smaller sleeve length (e.g., ${\leq}1D$) produce higher degree of soil plugging at shallow penetration depths while the piles of a larger sleeve length (e.g., ${\geq}2D$) produce higher degree of soil plugging at greater penetration depths.

Assessment of The Above-Ground Carbon Stock and Soil Physico-Chemical Properties of an Arboretum within The University of Port Harcourt, Nigeria

  • Akhabue, Enimhien Faith;Chima, Uzoma Darlington;Eguakun, Funmilayo Sarah
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.3
    • /
    • pp.193-205
    • /
    • 2021
  • The importance of forests and trees in climate change mitigation and soil nutrient cycling cannot be overemphasized. This study assessed the above-ground carbon stock of two exotic and two indigenous tree species - Gmelina arborea, Tectona grandis, Khaya grandifoliola and Nauclea diderrichii and their litter impact on soil nutrient content of an arboretum within the University of Port Harcourt, Nigeria. Data were collected from equal sample plots from the four species' compartments. Tree growth variables including total height, diameter at breast height, crown height, crown diameter and merchantable height were measured for the estimation of above-ground carbon stock. Soil samples were collected from a depth of 0-30 cm from each compartment and analyzed for particle size distribution, organic carbon, total nitrogen, available phosphorus, exchangeable bases, exchangeable acidity, cation exchange capacity, base saturation, pH, Manganese, Iron, Copper and Zinc. Analysis of Variance (ANOVA) was used to test for significant difference (p<0.05) in the carbon contents of the four species and the soil nutrient contents of the different species' compartments. Pearson correlation was used to assess the relationships between the carbon contents, growth parameters and soil parameters. The highest and lowest carbon stock per hectare was observed for G. arborea (151.52 t.ha-1) and K. grandifoliola (45.45 t.ha-1) respectively. Cation exchange capacity and base saturation were highest and lowest for soil under G. arborea and K. grandifoliola respectively. The pH was highest and lowest for soil under G. arborea and T. grandis respectively. Carbon stock correlated positively with dbh, crown diameter, merchantable height and Zn and negatively with base saturation. The study revealed that G. arborea and N. diderrichii can effectively be used for reforestation and afforestation programmes aimed at climate change mitigation across Nigeria. Therefore, policies to encourage and enhance their planting should be encouraged.

Effects of Soil Environment on the Growth of Pinus Thunbergii and Zelkova Serrata at the Reclaimed Seaside (임해매립지의 토양환경이 곰솔과 느티나무의 생육에 미치는 영향)

  • 김도균;장병문;김용식
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.4
    • /
    • pp.9-20
    • /
    • 2000
  • The purpose of thus paper is to provide the knowledge on preparing for the planting soil and planting method, and maintenance at the reclaimed seaside. Based on the collected data from the field work, the soil environment, the growth of height, inter-node, tree ring and roots of the two species had been analyzed. The determinant of soil factors, affecting the growth of trees, turned out to be six elements such as soil hardness, soil acidity, potassium, calcium, magnesium and total nitrogen. Because the variances of both growth of tree height and tree ring are greater than that of root, the growth characteristics of ground parts of the species by the individual tree species is more dynamical than those of underground parts. From the mean difference test the growth of height, root between Pinus thunbergii and Zelkova serrata, have been turned out to be statistically significant at 5 percent level. Pinus thunbergii is a sapling, so it grows faster than Zelkova serrata while Pinus thunbergii has better roots system than Zelkova serrata. From the correlation analysis, it showed the very strong correlation between tree height growth and potassim, while the lowest correlation coefficient was between soil hardness and potassim as 0.744. From the multiple regression analysis, both soil hardness and magnesium affect to the tree growth, soil hardness and potassium to the tree growth, potassium and calcium to the rot growth, respectively. Using this research results, we can be use the planting plan including revegetation, construction and maintenance of the reclaimed seaside. In the future, the planting method including the ground preparation and tree species selection for the reclaimed seaside should be accompanied in advanced through the soil survey and relevant analysis.

  • PDF

Studies on the Mobility of Groundwater in Soil Environment by Capillary Rise Observation (모세관 현상에 의한 토양 환경에서의 지하수 거동에 관한 연구)

  • Choi, Sua;Choi, Eun-Jin;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.115-119
    • /
    • 2011
  • The mobility of groundwater in the soil environment has an important role in the soil environment and absorption of plant. Therefore, studies on the mobility of groundwater considering the physical and chemical properties of soil is very important. In this study, movement of water due to change in soil particle size were observed by capillary rise. The height of the capillaries was measured according to capillary diameter, temperature and solution concentration. The inner diameter of each capillary itself is 0.012, 0.016, 0.024, 0.027 cm, and experiments were performed at $22^{\circ}C$. As a result, the height of the capillaries decreased with increasing capillary diameter, and the solution temperature but increased with increasing concentration. Changes in the height of the capillaries are interpreted to related with surface tension by the Young-Laplace equation. Also on the mobility of groundwater, the increase of water and soil temperatures can be significant factors caused by ion strength and global warming as well as pores in the soil particles. The results of this study is considered to provide the basic data on the behavior of groundwater in the soil environment.

Estimation of Critical Height of Embankment to Mobilize Soil Arching in Pile-supported Embankment (말뚝지지성토지반 내 지반아칭이 발달할 수 있는 한계성토고의 평가)

  • Hong, Won-Pyo;Hong, Seong-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.89-98
    • /
    • 2010
  • A method to design a critical height of embankments is presented so as to mobilize fully soil arching in pile-supported embankments. The behavior of the load transfer of embankment weights on pile cap beams was investigated by a series of model tests performed on pile-supported embankments with relatively wide space between cap beams. The model tests explained that the behavior of the load transfer depended very much on the height of embankments, because soil arching could be mobilized in pile-supported embankments only under enough high embankments. The measured vertical loads on cap beams coincided with the predicted ones estimated by the theoretical equations, which have been presented in the previous studies on the basis of load transfer mechanisms according to either the punching shear failure mode during low filling stage or the soil arching failure mode during high filling stage. The mechanism of the load transfer was shifted beyond a critical height of embankment from the punching shear mechanism to the soil arching mechanism. Therefore, in order to mobilize soil arching in pile-supported embankments, the embankments should be designed at least higher than the critical height. A theoretical equation to estimate the critical height could be derived by equalizing the vertical loads estimated by the load transfer mechanisms on the basis of both the punching shear and the soil arching. The derived theoretical equation could predict very well the experimental critical height of embankment.

Impact-Response of Floor Construction Materials (바닥건축재료의 충결하중에 대한 반응)

  • Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.83-87
    • /
    • 1995
  • Impact-bouncing height of steel balls dropped from 1m height on various floor materials were measured to evaluate impact-bouncing characteristics depending on floor materials and the effect of these properties on walkability and fatigue of humanbody. Stone and tile finished concrete floor showed the highest bouncing height of around 70%, and soil showed the lowest bouncing height of around 3%. The second highest bouncing height was about 40% which corresponded to terazo finished concrete floor and about twice as high as the bouncing height on concrete floor without finishing. The impact-bouncing height could be lowered to 15~20% by using gum tile on concrete floor. Steel showed similar bouncing height to concrete floor, and wood-based materials showed the second lowest bouncing height next to soil. Among wood-based materials, hardwood species having higher specific gravities showed relatively high bouncing height of 8~24%, softwood species having low specific gravities showed relatively lower bouncing height of 5~18%, and wood composites showed bouncing height of 8~18%. Among all the materials used in this study, wood-based floor materials corresponded to the bouncing height of 10~15% which is considered to be best for humanbody. Surface painting on wood-based materials increased the bouncing height, and the number of bouncing of steel balls after dropping from 1m height increased as the bouncing height increased.

  • PDF

The Effects of the topographical, Soil and Meterological Factors on the Tree Height Growth in the Pinus thunbergii Stands (지형(地形), 토양(土壤) 및 기상인자(氣象因子)가 해송(海松)의 수고생장(樹高生長)에 미치는 영향(影響))

  • Son, Yeong Mo;Chung, Young Gwan
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.380-390
    • /
    • 1994
  • This study was conducted to investigate the effects of the topographical factors (16 items), physico-chemical properties of soil (13 items) and meteorological factors(9 items) on the height growth of Pinus thunbergii stands along the coastal area in Korea. According to the coefficients by partial correlation analysis in total area, it was found that tree height growth was considerably affected by local topography, soil hardness, soil B-horizental depth, effective soil depth, soil moisture, parent rock, soil texture, and etc.. And the soil factors were available $P_2O_5$, total nitrogen, base saturation, exchangeable $Ca^{{+}+}$, and etc.. In partial correlation analysis, annual relative humidity, annual precipitation, index of aridity, and etc. were found to be the most important factors influencing on tree height growth of Pinus thunbergii stands. In conlusion, the topographical, soil and meteorological factors have multiplex influence on the tree height growth in the Pinus thunbergii stands. They promise to provide the basis of improving not only the selection of suitable sites and the management of soil fertilizer but also the estimation of growth and yield. Hence these results would be used successfully for the design in the scientific forest working plan.

  • PDF

Physiological Response of Tetrapleura tetraptera (Schum. and Thonn.) Taub. to Soil Textural Class, Moisture and Light Intensity

  • Akinyele, Adejoke O.;Wakawa, Lucky Dartsa
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • Investigation was carried out on response of Tetrapleura tetraptera (Schum. and Thonn.) to soil, water and light with the view of its domestication and introduction to different ecological regions. The experiment was arranged in a factorial experiment of $3{\times}3{\times}3$ in a completely randomized design (CRD) with three replicates. The factors were: soil textural class (Loamy sand, Sand and Sandy clay loam), watering regime (daily, twice a week and once a week) and light intensity (100%, 75% and 50%). Soil textural classes had significant influence on collar diameter, stem height, number of leaflets, root/shoot ratio and relative growth rate of Tetrapleura seedlings. Seedlings grown on loamy sand recorded the highest mean value- 2.28 mm for collar diameter, stem height- 12.9 cm, number of leaflets- 19.9, chlorophyll b- $0.34mg\;mL^{-1}$, leaf relative water content- 27.4% and relative growth rate- $0.037mg\;g^{-1}\;day^{-1}$. Watering regime had significant influence on the collar diameter of Tetrapleura. Seedlings watered daily recorded the highest mean value- 2.25 mm for collar diameter. Light intensity significantly influenced collar diameter and root/shoot ratio. Seedlings exposed to 100% light intensity recorded higher mean value for collar diameter- 2.28 mm and root/shoot ratio- 1.481 cm. The interaction between soil textural class and light intensity significantly affected collar diameter, stem height and number of leaflets. Higher mean value for collar diameter (2.47 mm) stem height (13.25 cm) and number of leaflets (21.16) were recorded while the interaction between soil textural class, light intensity and watering regime was significant for only number of leaflets. Tetrapleura exhibited some level of tolerance to different soil texture, drought and light intensity. Therefore, Tetrapleura has the potentials to be raised in different ecological zones characterized by difference in soil, rainfall and amount of sunshine.

New coefficients to find natural period of elevated tanks considering fluid-structure-soil interaction effects

  • Maedeh, Pouyan Abbasi;Ghanbari, Ali;Wu, Wei
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.949-963
    • /
    • 2017
  • The main purpose of the current study is to develop the new coefficients for consideration of soil-structure interaction effects to find the elevated tank natural period. Most of the recommended relations to find the natural period just assumed the fixed base condition of elevated tank systems and the soil effects on the natural period are neglected. Two different analytical systems considering soil-structure- fluid interaction effects are recommended in the current study. Achieved results of natural impulsive and convective period, concluded from mentioned models are compared with the results of a numerical model. Two different sets of new coefficients for impulsive and convective periods are developed. The values of the developed coefficients directly depend to soil stiffness values. Additional results show that the soil stiffness not only has significant effects on natural period but also it is effective on liquid sloshing wave height. Both frequency content and soil stiffness have significant effects on the values of liquid wave height.

Pile tip grouting diffusion height prediction considering unloading effect based on cavity reverse expansion model

  • Jiaqi Zhang;Chunfeng Zhao;Cheng Zhao;Yue Wu;Xin Gong
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.97-107
    • /
    • 2024
  • The accurate prediction of grouting upward diffusion height is crucial for estimating the bearing capacity of tip-grouted piles. Borehole construction during the installation of bored piles induces soil unloading, resulting in both radial stress loss in the surrounding soil and an impact on grouting fluid diffusion. In this study, a modified model is developed for predicting grout diffusion height. This model incorporates the classical rheological equation of power-law cement grout and the cavity reverse expansion model to account for different degrees of unloading. A series of single-pile tip grouting and static load tests are conducted with varying initial grouting pressures. The test results demonstrate a significant effect of vertical grout diffusion on improving pile lateral friction resistance and bearing capacity. Increasing the grouting pressure leads to an increase in the vertical height of the grout. A comparison between the predicted values using the proposed model and the actual measured results reveals a model error ranging from -12.3% to 8.0%. Parametric analysis shows that grout diffusion height increases with an increase in the degree of unloading, with a more pronounced effect observed at higher grouting pressures. Two case studies are presented to verify the applicability of the proposed model. Field measurements of grout diffusion height correspond to unloading ratios of 0.68 and 0.71, respectively, as predicted by the model. Neglecting the unloading effect would result in a conservative estimate.