• Title/Summary/Keyword: soil gas

Search Result 820, Processing Time 0.024 seconds

Sn$O_2$ Ceramic Gas Sensor for VOC Contaminated Soil Gas Monitoring (VOC 함유 토양가스 모니터링을 위한 Sn$O_2$ 세라믹 가스센서의 반응특성 연구)

  • 최관영;조현정;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.125-128
    • /
    • 2000
  • Recently, development of advanced soil monitoring technology has became essential for effective site remediation. Soil gas evaluation is simple and powerful technology which can reduce the environmental impact during the survey of VOC contaminated area. In this research, the feasibility test of SnO$_2$ceramic gas sensor is conducted to improve soil gas measurement technology. As a result, it is successfully proved that this gas sensor has an possibility for soil gas monitoring.

  • PDF

A Study on the Influence of the Organic Matter Contents in Soil Deposited of Chlorine Gas (염소의 토양 침적특성에 미치는 토양 내 유기물 함량의 영향)

  • Song, Bo Hee;Lee, Kyung Eun;Yim, Sang Sik;Lee, Jin Han;Jo, Young Do
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • In the event of toxic gas accidents, soil deposition is a main factor which has an effect on extent of the damage. In this study, it presents the influence of soil deposition properties according to the change of soil depth and the organic matter contents in soil. In this experimentation, the soil deposition device developed in Air Force Research Laboratory in USA is recreated. The tested samples of mixing soil have each value of the organic matter contents. After a variety of synthetic soil were exposed to constant Cl2 concentration, the chlorinity is measured using an anion exchange chromatography(ICS-1100) to quantify the mount of deposition. As the results, the increase of soil depth causes an decreased soil deposition and the increase of exposure time causes an increased soil deposition in surface. Also, the increase of soil deposition mainly depended on the organic matter contents in surface.

Rapid Measurement of VOC Using an Analysis of Soil-Gas (Soil-Gas의 분석을 이용한 휘발성 유기화합물 오염도 신속측정)

  • 김희경;조성용;황경엽
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.3-9
    • /
    • 1998
  • This paper presents soil-gas surveying technique to delineate an area contaminated with volatile organic compounds, which are common solvents and constituents of gasoline. The sampling method of soil-gas surveying is 1) grab sampling, which actively takes sample using a pump, or 2) passive sampling, which takes sample through diffusion in a trap filled with absorbent. The grab sampling shows the level of contamination at a certain location at a certain time, while the passive sampling shows the change in the contamination at a certain location. The analysis of soil gas can be performed with 1) a small portable detectors such as PID (photoionization detector) or FID (flame-ionization detector) to measure the total hydrocarbon in the soil gas, 2) a gas detector tube, which is filled with indicator reagents and changes its color with concentrations of the gas of interest, or 3) a portable GC (gas chromatograph), which can analyze different compounds simultaneously. The soil-gas surveying technique is a much less expensive method to investigate area contaminated volatile organic compounds and thus can be used as a screening tool to identify an area, which needs to be further investigated.

  • PDF

A Study on the Diffusion Behavior of Leak Gas from Underground Gas Pipeline (지하매설 가스배관의 가스 누출시 지하 확산거동에 관한 연구)

  • Choi S.C.;Jo Y.D.;Kim K.S.
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.43-52
    • /
    • 1999
  • An experimental chamber was fabricated to observe the gas diffusion behavior of leak gas from underground city-gas pipeline. It was made of acryl so that feeding of gas and the measuring points of the gas could be varied in each experiment. The MOS sensors were used to measure the concentrations of leak gas. The soil media such as the Jumunjin standard sand and the granite weathered soil were used to measure the gas diffusion and the change of leak gas concentrations was measured with time for various gas flow rate. As the distance between the leak point of gas and the measuring point of MOS sensor decreases, or the leak rate increases, the detection time of gas at a measuring points decreases and the gas concentration increases quickly and the concentration of the gas at steady state also increases. As the density of granite weathered soil is higher than that of Jumunjin standard sand for compaction, the detection time of leak gas in the granite weathered soil was longer than that in the Jumunjin standard soil. The leak gas concentrations in the granite weathered soil were lower than those in the Jumunjin standard sand at the beginning of gas leaking from a pipe, but inverse phenomenon was occured at steady state.

  • PDF

Soil Air CO2 Concentrations in a Spruce-Fir Forest, Maine, USA

  • Son, Yow Han;Fernandez, Ivan J.;Kim, Zin-Suh
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.2
    • /
    • pp.177-182
    • /
    • 1992
  • Soil air $CO_2$ concentrations were measured in two soil depths (O and B horizon) by (1) the use of the Draeger direct reading chromatographic tubes and (2) syringe gas collections with gas chromatographic detection in a Spodosol supporting low elevation, commercial spruce-fir forest, Maine, USA, Mean soil air $CO_2$ concentrations(%) during the growing season of 1991 ranged from 0.11 in the O horizon by the Draeger method to 0.29 in the B horizon by the gas chromatographic method. Soil air $CO_2$ concentrations by the Draeger method were lower than those obtained using the gas chromatographic method for both soil horizons. However, data from the two methods were significantly(p<0.01) correlated and paralleled each other relative to temporal patterns. Positive and highly significant correlations existed between soil air $CO_2$ concentrations and soil temperature, although correlation coefficients only ranged from 0.13 to 0.32, depending on the method and horizon chosen.

  • PDF

Greenhouse Gas (CH4, CO2, N2O) Emissions from Estuarine Tidal and Wetland and Their Characteristics (온실기체 (CH4, CO2, N2O)의 하구언갯벌 배출량과 배출특성연구)

  • Kim, Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.225-241
    • /
    • 2007
  • A closed flux chamber system was used for measuring major greenhouse gas (GHG) emission from tideland and/or wetland soils in estuarine area at Saemankum, Kunsan in southwestern Korea during from months of February to June 2006. Hourly averaged GHG soil emissions were measured two to three times a day during the ebb tide hours only. Site soils were analyzed for soil parameters (temperature, pH, total organic contents, N and C contents in soil) in the laboratory. Soil GHG fluxes were calculated based on the GHG concentration rate of change measured inside a closed chamber The analysis of GHG was conducted by using a Gas Chromatography (equipped with ECD/FID) at laboratory. Changes of daily, monthly GHGs' fluxes were examined. The relationships between the GHG emissions and soil chemical contents were also scrutinized with respect to gas production and consumption mechanism in the soil. Soil pH was pH $7.47{\pm}0.49$ in average over the experimental period. Organic matter contents in sample soil was $6.64{\pm}4.98\;g/kg$, and it shows relatively lower contents than those in agricultural soils in Kunsan area. Resulting from the soil chemistry data, soil nitrogen contents seem to affect GHG emission from the tidal land surface. The tidal soil was found to be either source or sink for the major GHG during the experimental periods. The annual average of $CH_{4}\;and\;CO_{2}$ fluxes were $0.13{\pm}0.86\;mg\;m^{-2}h^{-1}\;and\;5.83{\pm}138.73\;mg\;m^{-2}h^{-1}$, respectively, which will be as a source of these gases. However, $N_{2}O$ emission showed in negative flux, and the value was $-0.02{\pm}0.66\;mg\;m^{-2}h^{-1}$, and it implies tidal land surface act as a sink of $N_{2}O$. Over the experimental period, the absolute values of gas fluxes increased with soil temperature in general. Averages of the ambient gas concentration were $86.8{\pm}6.\;ppm$ in $CO_{2},\;1.63{\pm}0.34\;ppm\;in\;CH_{4},\;and\;0.59{\pm}0.15\;ppm\;in\;N_{2}O$, respectively. Generally, under the presence of gas emission from agricultural soils, decrease of gas emission will be observed as increase in ambient gas concentration. We, however, could not found significant correlation between the ambient concentrations and their emissions over the experimental period. There was no GHG compensation points existed in tide flat soil.

생활폐기물 매립장내 토양가스 분포와 지하수수질 특성

  • 고경석;조춘희;김통권;김탁현
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.377-380
    • /
    • 2004
  • To identify the effect of landfill waste for groundwater and unsaturated air environment, soil gas survey and hydrogeochemical study were executed. The geology of the study area is granite and aquifer is mainly composed of sandy soil. The results of spatial distribution from soil gas showed the boundary of buried waste and processes and degree of waste decomposition. Groundwater contamination by leachate from landfill is controlled by groundwater flow attributed by the original topography and liner.

  • PDF

Analysis of Benzophenone in Sediment and Soil by Gas Chromatography/Mass Spectrometry (기체크로마토그래피/질량분석기에 의한 저질 및 토양시료 중 벤조페논의 분석법 연구)

  • 권오승;김은영;류재천
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.3
    • /
    • pp.121-126
    • /
    • 2001
  • Analytical method of benzophenone (BP) in sediment and soil was developed by gas chromatography/mass selective detector/selected ion monitoring (GC/MSD/SIM). The ultrasonic extraction of US EPA (method 3550B) method and liquid-liquid extraction for sediment and soil samples were used for the analysis of BP from sediment and soil. BP was extracted with n-hexane. Organic layer was washed with 5% sodium chloride solution. 1∼2 l of the concentrated solution of organic layer was applied to GC/MSD. The retention time of BP peak was 11.10 min. Recovery (%) of BP by ultrasonication from sediment and soil samples was 96.0∼100.6% and 40.0∼83.0%, respectively. Recovery of BP by liquid-liquid extraction was 51∼59% in soil samples. The detection limit of BP in sediment and soil samples were determined to 0.1 ng/g.

  • PDF

The Usability of Zinc Electrode using Wireless Measuring System of Electric Potential (무선전위측정시스템에 사용하는 아연전극 활용성 검토)

  • Lee, Jong-Rark;Leem, Sa-Hawn;Kim, Sang-O
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.177-180
    • /
    • 2006
  • This study is to make a basic study if solid zinc (Zn) can be used for buried reference electrode, so we examined the adequacy of zinc as reference electrode by using zinc which showed regular electrode for buried period. The deference of electric potential if zinc electrode for corrosion factor such as soil resistivity or pH didn't show fixed trend and there was no clear trend on the change of measurement period. From field test, it is known that the natural electric potential difference of CSE electrode and zinc electrode is 1,100mV, but the electric potential of zinc electrode for CSE electrode in the natural soil and copying soil was 1,094~1,158mV. There was no fixed trend on the change of measurement period and electric potential difference of zinc electrode for corrosion factors such as soil resistivity or pH. Consequently, there was 40~60mV of electric potential difference in every copying soil during the experiment measurement.

  • PDF

The study on the BTEX Concentration of Soil in Gas Station (국내 주유소 토양의 BTEX 오염에 관한 연구)

  • Shin, Joung-Nam;Roh, Sung-Hyeuk;Jung, Sang-Rak;Oh, Gil-Rok;Kim, Mi-Kyoung;Yook, Woon-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.18-23
    • /
    • 2014
  • The BTEX contamination of soil around gas station in Korea was investigated in 53 gas stations in 2013 by official test method on soil pollution. Each gas station was divided into oil tank area, line area, and surrounding area. The concentration of BTEX in 1066 sites of 53 gas stations was N.D.~ 3437.36 mg/kg. The order of average concentration for area was as follows: line area ($20.91{\pm}144.79mg/kg$) > tank area ($15.11{\pm}110.08mg/kg$) > surrounding area ($10.79{\pm}111.40mg/kg$). It was the number of sampling site exceeding regulatory levels at surrounding area the most at all. The average concentration of xylene was the highest, while that of ethylbenzene was the lowest.