• Title/Summary/Keyword: soil fertigation

Search Result 80, Processing Time 0.021 seconds

Determination of NPK Concentration in Fertigation Solution for Production of Greenhouse Oriental Melon (Cucumis melo L.) Using Response Surface Methodology (반응표면분석에 의한 참외 관비액 농도결정)

  • Seo, Young-Jin;Yeon, Il-Kweon;Shin, Yong-Seub;Suh, Dong-Whan;Choi, Seong-Yong;Park, So-Deuk;Jang, Won-Cheol;Suh, Jun-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.492-496
    • /
    • 2012
  • Fertigation with drip irrigation provides effective and cost-efficient way to supply both nutrient and water to crop. However, inappropriate management of fertigation systems may cause inefficient nutrient and water use, thereby diminishing expected yield benefits as well as contributing to deterioration of soil properties. In this study, greenhouse experiments were conducted to investigate the optimal concentration of N, P and K fertigation solution for maximum production of oriental melon (Cucumis melo L.) using a response surface methodology, to evaluate an efficiency of nutrients uptake and an effect on soil chemical properties. Canonical analysis of response surface and contour plot interpretation revealed that $108.3mg\;L^{-1}$ of nitrogen (N), $54.8mg\;L^{-1}$ of phosphorous (P) and $158.3mg\;L^{-1}$ of potassium (K) resulted in maximim yield of oriental melon ($2,966kg\;10a^{-1}$). Compared to conventional practice, fertigation increased fruit yield up to 23.0% (p<0.001), uptake of N and K by plant also up to 33.3% (p<0.001) and 15.7% (p<0.01), respectively. These results suggest that fertigation has the advantage of the increase in yield and fertilizer use efficiency.

Effect of Fertigation Concentration on Yield of Tomato and Salts Accumulation in Soils with Different EC Level Under PE Film House (토양의 EC 수준에 따른 관비공급 농도가 시설토마토 수량과 토양의 염류집적에 미치는 영향)

  • Lee, Seong-Tae;Kim, Yeong-Bong;Lee, Young-Han;Lee, Sang-Dae
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.64-70
    • /
    • 2006
  • This study was conducted to investigate the concentration of fertigation for optimum yield and soil management of tomato cultivation in soils with different Electrical conductivity (EC) level under PE film house. The EC levels of soil were adjusted to 1.4, 3.0 and 5.4 dS/m and fertigation concentrations were supplied with 0.0 (groundwater), 1.0, 2.0 and 3.0 dS/m, respectively. When the concentration of fertigation was supplied over 3.0 dS/m to soil with EC 1.4 dS/m, the concentrations of $NO_3-N,\;avail.-P_2O_5$, and exchangeable K in soil were increased after the experiment. When fertigation concentration was supplied over 2.0 and 1.0 ds/m to soil with EC 3.0 and 5.4 dS/m respectively, the nutrient were also accumulated in the soil. Thus, the optimum concentrations of fertigation for optimum yield and soil management for tomato cultivation were recommended $1.0{\sim}2.0dS/m$, 1.0 dS/m and ground water (0.0 dS/m) to soils with EC 1.4, 3.0 and 5.4 dS/m, respectively. The fruit weight marketability and marketable yield of tomato were not significant among the treatments at 5% level by LSD. The concentrations of T-N, $P_2O_5\;and\;K_2O$ in tomato leaf were increased with increasing of fertigation concentration whereas the concentrations of CaO and MgO decreased with increasing of fertigation concentration.

Optimal Levels of Additional N Fertigation for Greenhouse Watermelon Based on Cropping Pattern and Growth Stage

  • Sung, Jwakyung;Jung, Kangho;Yun, Hejin;Cho, Minji;Lim, Jungeun;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.699-704
    • /
    • 2016
  • An estimation of optimal requirement of additional N by cropping pattern and growth stage is very important for greenhouse watermelon. The objectives of this study were to estimate an amount of optimal additional N based on growth, N uptake and yield of watermelon. In order to achieve these goals, we performed the study at farmer's greenhouse with a fertigation system and watermelon was cultivated three times (spring, summer and autumn) in 2015. The levels of additional N were set up with x0.5, x0.75, x1.0 and x1.5 of the $NO_3$-N-based soil-testing N supply for watermelon cultivation. The trends of growth and N uptake of watermelon markedly differed from cropping pattern; spring (sigmoid), summer and autumn (linear). The yield of watermelon was the highest at summer season and followed by autumn and spring. Also, the x1.5N showed a significantly higher yield compared to other N treatments. On the basis of growth, N uptake and yield of watermelon, we estimated an optimal level of additional N by cropping pattern and growth stage as follows; 1) spring (transplanting ~ 6 WAT : 6 ~ 14 WAT : 14 ~ harvest = 5 : 90 : 5%), summer (transplanting ~ 4 WAT : 4 ~ 8 WAT : 8 ~ harvest = 25 : 50 : 25%) and autumn (transplanting ~ 4 WAT : 4 ~ harvesting : 50 : 50%). In conclusion, nutrient management, especially N, based on cropping pattern and growth stage was effective for favorable growth and yield of watermelon.

Effects of reduced additional fertilizer on tomato yield and nutrient contents in salt accumulated soil (시설재배지 염류집적 토양에 대한 추비 저감 처리가 토마토 수량 및 양분함량에 미치는 영향)

  • Lim, Jung-Eun;Ha, Sang-Keun;Lee, Ye-Jin;Yun, Hye-Jin;Cho, Min-Ji;Lee, Deog-Bae;Sung, Jwa-Kyung
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.423-429
    • /
    • 2015
  • This study was conducted to evaluate the effects of reduced nitrogen (N) and potassium (K) fertigation as additional fertilizer on tomato yield and nutrient contents in excessively nutrients-accumulated soil. Shoot and root dry weights (DW), dry matter rate for shoot, root and fruit and number of fruit in both AF50 and AF100 (50 and 100% levels of additional fertilizer) treatments were increased in comparison with those in AF0 (0% level of additional fertilizer) treatment. In case of nutrient uptake by tomato, nitrogen, phosphorous (P) and potassium contents in all tomato parts (leaf, stem, root and fruit) in AF50 and AF100 treatment were lower than those in AF0 treatment. On the contrary, soluble sugar and starch contents in all tomato parts in AF50 and AF100 were higher than those in AF0 treatment. There were differences between AF0 and AF50 or AF100 in tomato growth, yield, nutrient level and contents of soluble sugar and starch. In contrast, the level and initiation point of fertigation did not significantly affect the parameters. Based on our results, the application of properly reduced level of additional fertilizer is possible to maintain the productivity of tomato and alleviate the nutrient accumulation in plastic film house soils.

Suitability Verification of Developed Nutrient Solution for Fertigation Culture of Cucumber (Cucumis sativus L.) (오이 관비재배용 개발 배양액의 적정성 검증)

  • Han, Suk-Kyo;Eun, Jong-Seon;Kim, Ho-Cheol;Lee, Yong-Beom;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.170-175
    • /
    • 2008
  • To verify suitability of the developed nutrient solution for fertigation culture of cucumber, chemical changes of soil, growth characteristics and yield of cucumber as affected by conventional fertigation method (Control), the developed nutrient solution for fertigation culture (DNF) and Yamasaki cucumber recipe (YCR) were investigated. At 48 days after transplant, photosynthetic and transpiration rate of cucumber leaves were the highest in 3/2 strength of DNF and 1/2 strength of YCR, but not different with the Control, in the later growing period photosynthetic rate was the highest in 3/2 strength of DNF and YCR and was clearly different with the Control, transpiration rate was the highest in 3/2 strength of DNF and 1/2, 1 strengths of YCR. The growth and yield of cucumber, nutrient elements of cucumber leaves except for calcium were more in DNF and YCR than in the Control. Compared with pre-treated loam soil, pH of the soil was low and electric conductivity was high in all treatments, amounts of accumulated phosphorus, potassium, calcium, and magnesium were much in the higher concentrations per the kinds of nutrient solutions. From the above results, it was considered that the developed nutrient solution has suitability as nutrient solution for fertigation culture of cucumber.

Effects of Slope and Fertilizer Application Method on the Behavior of Nitrogen in Saprolite Piled Highland (석비레 성토지에서 경사도 및 시비방법이 시용 질소의 행동에 미치는 영향)

  • Kim, Ki-Deog;Ahn, Jae-Hoon;Park, Kyung-Hoon;Lee, Eung-Ho;Park, Chol-soo;Hwang, Seon-Woong;Lee, Sang-Mo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.285-291
    • /
    • 2006
  • The lysimeter ($1.2m\;with{\times}1.6m\;length$) experiment using $^{15}N$ tracer method was conducted to investigate the influence of slopes (degree 5, 15 and 30%) and fertilizer application methods (solid application and fertigation) on the behavior of applied urea in saprolite piled highland with Chinese cabbage cultivation. NDFFs(nitrogen derived from fertilizer) in soil were increased with decreasing of degree of slope and of depth of soil. The recovery as percentage of fertilizer nitrogen by Chinese cabbage were 69.5% for solid application and 76.5% for fertigation in 5% slope, 65.0% for solid application and 70.2% for fertigation in 15% slope, and 56.1% for solid application and 62.3% for fertigation in 30% slope. There, fertigation will make great contributions to the reduction of environmental contamination by run off and to the increase of fertilizer efficiency in Chinese cabbage cultivated highland.

Green Pepper Cultivation in Mixture Bed of Soil and Rice Hull for Alleviation of Salinity Problems in Plastic Film House (연작장해 경감을 위한 시설 고추의 왕겨 혼합 소토양 재배기술)

  • Kim, Jin-Won;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.340-344
    • /
    • 2005
  • Salinity problems are caused from the accumulation of soluble salts in the root zone. These excess salts reduce plant growth and vigor by altering water uptake and causing ion-specific toxicities or imbalances. In this investigation, green pepper cultivation technique using mixture bed of soil and rice hull and surface drop fertigation system was examined to prolong the productivity of salt-affected plastic film house soils. Green pepper growth was better in the mixture bed of soil and rice hull comparing to the conventional soil cultivation. Especially root growth was much better and the root had more thin root system in the mixture bed of soil and rice hull. The better growth of root may be due to the better physical conditions and lower EC in the mixture bed of soil and rice hull where nutrient supply was well-managed with fertigation system. In the cultivation with mixture bed of soil and rice hull, fruit yield of green pepper was significantly higher; increased by 43% in comparison to the conventional soil cultivation. Pepper cultivation technique using mixture bed of soil and rice hull and surface drop fertigation system is expected to be a useful method for maintaining and prolonging the productivity of salt-affected plastic film house soils.

Fallow Cover Crop Species and Nitrogen Rate of Fertigated Solution on Cucumber Yield and Soil Sustainability in Greenhouse Condition

  • Lee, Seong Eun;Park, Jin Myeon;Noh, Jae Seung;Lim, Tae Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.23-27
    • /
    • 2014
  • Nutrient accumulation in surface soil has become a serious problem for cucumber production in greenhouse. However, still in many cases, soil management practices are only focused on maintaining crop yield, regardless of sustainability related with soil chemical properties. This study was conducted to propose a sustainable soil management practice by investigating the impact of cover crop species and nitrogen rate of fertigated solution on cucumber yield and soil chemical properties in greenhouse condition. Rye and hairy vetch were tested as a fallow cover crop, and each amount of urea (1/2, 3/4, 1 times of N fertilizer recommendations), determined by soil testing result, was supplied in fertigation plots as an additional nitrogen source. The result showed that the yield of cucumber was higher in rye treatment than control and hairy vetch treatment. In addition, rye effectively reduced EC and accumulated nutrients from the soil. Meanwhile, N concentration of fertigated solution showed no significant effect on the growth and yield of cucumber. Consequently, these results suggest that it is desirable to choose rye as a fallow catch crop for sustainable cucumber production in greenhouse.

Determination of Daily Amount of N and K Required in Various Growth Stages and Establishment of Diagnostic Criteria Using Petiole Sap Analysis in the Semi-Forcing Culture of Cucumber (반촉성 관비재배 오이의 생육단계별 시비관리를 위한 일일시비량 및 엽병즙액의 농도 기준 설정)

  • 김기덕;이재욱;조일환;김태영;우영희;남은영;문보흠
    • Journal of Bio-Environment Control
    • /
    • v.13 no.2
    • /
    • pp.96-101
    • /
    • 2004
  • This study was conducted to determine the daily application rate and amount of N and K with fertigation during different growth stages in semi-forcing culture of cucumber plants (Cucumis sativus L. cv. Eunseongbaekdadagi). The diagnostic criteria for N and K also investigated based on petiole sap analysis. The dry weight increased slowly until 30 days after transplanting. The highest dry weights were observed at 60 days after planting, then it decreased. As the plant grew, the contents of N and K in the petiole sap and fruit of cucumber decreased. The daily uptake of N and K were highly correlated with the growing days. The $NO_3$ concentrations in petiole sap were in the range from 3,500 to 4,500 mgㆍ$L^{-1}$ in the early growth stage, but those were in the range from 2,000 to 3,000 mgㆍ$L^{-1}$ after then. However, K concentration in petiole sap were in the rang from 5,000 to 7,000 mgㆍ$L^{-1}$ The fluctuation in petiole sap concentration of K was severe in the monthly fertigation and moderate in the daily fertigation. The fertigation by petiole sap diagnosis forced EC of soil to be low and yield to increase compared to the control.

Effect of Pig Slurry Fertigation on Soil Chemical Properties and Yield of Tomato (Lycopersicon esculentum Mill.) (돈분 액비 관비가 토마토의 수량 및 토양화학성에 미치는 영향)

  • Park, Jin-Myeon;Lim, Tae-Jun;Kang, Seok-Boem;Lee, In-Bok;Kang, Yun-Im
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.610-615
    • /
    • 2010
  • This study was conducted to evaluate fertigation effects of pig slurry (PS) and chemical fertilizer (CF) in tomato by analyzing the growth and yield, nutrient content and uptake, nutrient use efficiency, and soil characteristics in greenhouse cultivation. The treatments compared were; no-fertilizer, two different levels of PS (26 mg $L^{-1}$ and 52 mg $L^{-1}$), and a control treatment of chemical fertilizer. There was no significant difference in growth and yield between PS and CF treatments. however, yield reduction was observed in PS 26 mg $L^{-1}$ treatment. The N-utilization efficiency in CF treatment was similar to that of PS 52 mg $L^{-1}$ treatment. Nutrient utilization efficiency decreased in order of potassium (K), nitrogen (N), phosphate (P) with 29.2~43.3% in K, 15.8~36.7% in N, and 3.0~6.3% in P. In soil chemical characteristics, soil pH in PS treatment was higher than in CF treatment. In contrast, nitrate content in soil was higher in CF treatment than in PS treatment. The content of exchangeable K in soil was higher in PS and CF 52 mg $L^{-1}$ treatments. There was no significant difference in exchangeable Ca and Mg among those treatments. Therefore, it can be concluded that chemical fertilizers can be substituted by PS based on soil chemical analysis in tomato fertigation culture.