• 제목/요약/키워드: soil environmental risk assessment

검색결과 220건 처리시간 0.026초

한국형 소프트웨어를 이용한 유류.중금속 복합오염지역의 인체위해성평가 및 RBCA Tool Kit과의 비교분석 (Human Risk Assessment of a Contaminated Site Using Korean Risk-Based Corrective Action (K-RBCA) Software)

  • 남택우;류혜림;김영진;고석오;백기태;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권1호
    • /
    • pp.32-41
    • /
    • 2011
  • By using a newly developed Korean risk-based corrective action (K-RBCA) software (K-RBCA) and the RBCA Tool Kit, risk assessment was performed on a site that was contaminated with aromatic hydrocarbons and heavy metals. Eight chemicals including benzene, ethylbenzene, xylenes, naphthalene, benz(a) anthracene, benzo(b) fluoranthene, benzo(a) pyrene, and arsenic that exceeded the US EPA Soil Screening Level were chosen as the target pollutants. A conceptual site model was constructed based on the site-specific effective exposure pathways. According to the RBCA Tool Kit the carcinogenic risk of arsenic was larger than $10^{-6}$, which is the generally acceptable carcinogenic risk level. The K-RBCA estimated the same level of carcinogenic risk for arsenic. With the RBCA Tool Kit, the carcinogenic risk of benzo(a) pyrene was estimated to be about $1.3{\times}10^{-6}$. However, with the K-RBCA benzo(a) pyrene did not exhibit any risk. The inconsistency between the softwares was attributed to the different fundamental settings (i.e., medium division) between the two softwares. While the K-RBCA divides medium into surface soil, subsurface soil, and groundwater, the RBCA Tool Kit divides medium into only soil and groundwater. These differences lead to the different exposure pathways used by the two softwares. The K-RBCA considers the exposure pathways in surface soil and subsurface soil separately to estimate risk, however, the RBCA Tool Kit considers the surface soil and subsurface soil as one and uses the integrated exposure pathways to estimate risk. Thus the resulting risk is higher when the RBCA Tool Kit is used than when the K-RBCA is used. The results from this study show that there is no significant difference in the risks estimated by the two softwares, thus, it is reasonable to use the K-RBCA we developed in risk assessment of soil and groundwater. In addition, the present study demonstrates that the assessor should be familiar with the characteristics of a contaminated site and the assumptions used by a risk assessment software when carrying out risk assessment.

산화아연 나노물질의 미소생태계 내 거동 및 생물축적 (Fate and Bioaccumulation of Zinc Oxide Nanoparticles in a Microcosm)

  • 김은정;이재우;조은혜;성화경;유선경;김경태;신유진;김지은;박선영;엄익춘;김필제
    • 한국환경보건학회지
    • /
    • 제43권3호
    • /
    • pp.194-201
    • /
    • 2017
  • Objectives: Zinc oxide nanoparticles (ZnO NPs) are widely used in various commercial products, but they are exposed to the environment and can induce toxicity. In this study, we investigated the environmental fate and bioaccumulation of ZnO NPs in a microcosm. Methods: The microcosm was composed of water, soil (Lufa Soil 2.2) and organisms (Oryzias latipes, Neocaridina denticulata, Semisulcospira libertina). Point five and 5 mg/L of ZnO NPs were exposed in the microcosm for 14 days. Total Zn concentrations were measured using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and intracellular NPs were observed using Transmission Electron Microscopy (TEM). Results: In the initial stages of exposure, the Zn concentrations in water increased in all exposure groups and then decreased, while the Zn concentration in soil increased after three hours for the 5 mg/L solution. Zn concentrations also showed increasing trends in N. denticulata and S. libertina at 0.5 and 5 mg/L, and in O. latipes at 5 mg/L. Accumulation of NPs was found in the livers of O. latipes and hepatopancreas of N. denticulata and S. libertina. Conclusions: In the early stages of exposure, ZnO NPs remained in the water, and then were transported to the soil and test species. Unlike other species, total Zn concentrations in N. denticulata and S. libertina increased for both 0.5 mg/L and 5 mg/L. Therefore, ZnO NPs were more easily accumulated in zoobenthos than in fish.

화학사고물질 노출에 따른 피해지역 주민 건강위해성평가: 폼알데하이드 사례를 중심으로 (Health Risk Assessment for Residents after Exposure to Chemical Accidents: Formaldehyde)

  • 박시현;조용성;임희빈;박지훈;이철민;황승율;이청수
    • 한국환경보건학회지
    • /
    • 제47권2호
    • /
    • pp.155-165
    • /
    • 2021
  • Objectives: Acute exposure to high concentrations of chemicals can occur when a chemical accident takes place. As such exposure can cause ongoing environmental pollution, such as in the soil and groundwater, there is a need for a tool that can assess health effects in the long term. The purpose of this study was assessing the health risks of residents living near a chemical accident site due to long-term exposure while considering the temporal concentration changes of the toxic chemicals leaked during the accident until their extinction in the environment using a multimedia environmental dynamics model. Methods: A health risk assessment was conducted on three cases of formaldehyde chemical accidents. In this study, health risk assessment was performed using a multimedia environmental dynamics model that considers the behavior of the atmosphere, soil, and water. In addition, the extinction period of formaldehyde in the environment was regarded as extinction in the environment when the concentration in the air and soil fell below the background concentration prior to the accident. The subjects of health risk assessment were classified into four groups according to age: 0-9 years old, 10-18 years old, 19-64 years old, and over 65 years old. Carcinogenic risk assessment by respiratory exposure and non-carcinogenic risk assessment by soil intake were conducted as well. Results: In the assessment of carcinogenic risk due to respiratory exposure, the excess carcinogenic risk did not exceed 1.0×10-6 in all three chemical accidents, so there was no health effect due to the formaldehyde chemical accident. As a result of the evaluation of non-carcinogenic risk due to soil intake, none of the three chemical accidents had a risk index of 1, so there was no health effect. For all three chemical accidents, the excess cancer risk and hazard index were the highest in the age group 0-9. Next, 10-18 years old, 65 years old or older, and 19-64 years old showed the highest risk. Conclusion: This study considers environmental changes after a chemical accident occurs and until the substance disappears from the environment. It also conducts a health risk assessment by reflecting the characteristics of the long-term persistence and concentration change over time. It is thought that it is of significance as a health risk assessment study reflecting the exposure characteristics of the accident substance for an actual chemical accident.

다양한 위해성평가 방법에 따라 도출한 오염토양 선별기준의 차이에 관한 연구 (I): 매체 간 이동현상 해석에 따른 차이 (Analysis on the Risk-Based Screening Levels Determined by Various Risk Assessment Tools (I): Variability from Different Analyses of Cross-Media Transfer Rates)

  • 정재웅;류혜림;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권2호
    • /
    • pp.12-29
    • /
    • 2011
  • Risk-based screening levels (RBSLs) of some pollutants for residential adults were derived with risk assessment tools developed by United States Environmental Protection Agency (USEPA), American Society for Testing and Materials (ASTM), and Korea Ministry of Environment (KMOE) and compared each other. To make the comparison simple, ingestion of soil, dermal contact with soil, outdoor inhalation of vapors, indoor inhalation of vapors, and inhalation of soil particulates were chosen as exposure pathways. The results showed that the derived RBSLs varied for every exposure pathway. For direct exposure pathways (i.e., ingestion of soil and dermal contact with soil), the derived RBSLs varied mainly due to the different default values for exposure factors and toxicity data. When identical default values for the parameters were used, the same RBSLs could be derived regardless of the assessment tools used. For inhalation of vapors and inhalation of soil particulates, however, different analysis methods for cross-media transfer rates were used and different assumptions were established for each tool, identical RBSLs could not be obtained even if the same default values for exposure factors were used. Especially for inhalation of soil particulates pathway, screening level derived using KMOE approach (most conservative) was approximately 5000~10000 times lower than the screening level derived using ASTM approach (least conservative). Our results suggest that, when deriving RBSL using a specific tool, it is a prerequisite to technically review the analysis methods for cross-media transfer rates as well as to understand how the assessment tool derives the default values for exposure factors.

선진국의 토양위해성평가 모델 비교분석 연구 (Comparative Study of Soil Risk Assessment Models used in Developed Countries)

  • 안윤주;백용욱;이우미;정승우;김태승
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제12권1호
    • /
    • pp.53-63
    • /
    • 2007
  • 우리나라는 최근에 토양위해성평가 지침을 마련하였으며, 앞으로 토양위해성모델 개발에 대한 필요성이 대두되고 있다. 선진국에서는 자국 내 부지특성과 노출경로를 고려한 토양위해성평가 모델을 토양정책 전반에 활용하고 있다. 본 연구에서는 선진국에서 위해성평가에 이용되는 대표적인 오염토양 위해성평가 모델을 비교분석하였다. 연구대상이 된 모델은 미국, 영국, 네덜란드에서 사용하고 있는 CalTOX, CLEA, CSOIL로서, 노출경로, 토지이용도 그리고 노출량 산정식을 중심으로 비교분석하였다. 모델 검토시 우선적으로 비교 분석된 항목은 노출시나리오, 노출경로, 입력변수의 공통사항이며, 이러한 분석결과를 토대로 선진국의 토양위해성 모델들이 공통적으로 포함하고 있는 노출경로를 추출하여, 국내에 적용 가능한 토양 위해성평가 모델개발의 기초자료로 제안하였다. 인체노출량 산정식에서는 일반적으로 미국식 방법이 국내 상황에서 사용이 용이한 것으로 판단되며, 비산먼지나 휘발물질 흡입의 경우는 네덜란드식이 기본값이 제공되어 있으므로 사용하기가 편리할 것으로 판단된다.

국내 폐금속 광산지역에서의 토양, 지하수, 쌀의 중금속 노출에 따른 인체 위해성평가 (Risk Assessment for Heavy Metals in Soil, Ground Water, Rice Grain nearby Abandoned Mine Areas)

  • 나은식;이용재;고광용;정덕영;이규승
    • 한국환경농학회지
    • /
    • 제32권4호
    • /
    • pp.245-251
    • /
    • 2013
  • BACKGROUND: The objectives of this study are to investigate the contamination levels of heavy metals in soil, ground water, and agricultural product near the abandoned Boeun and Sanggok mine areas in Korea and to assess the health risk for these local residents exposed to the toxic heavy metals based on analytical data. METHODS AND RESULTS: By the results of human health risk assessment for local residents around Boeun and Sanggok, human exposure to cadmium, copper, arsenic from soil and to lead, cadmium, and arsenic from rice grain were higher in Sanggok, but human exposure to zinc and arsenic from ground water was higher in Boeun. By the results of hazard index (HI) evaluation for arsenic, cadmium, copper, lead, and zinc, HI values in both areas were higher than 1.0. This result indicated that the toxicity hazard through the continuous exposure to lead, cadmium, arsenic from rice, ground water, and soil would be likely to occur to the residents in the areas. Cancer risk assessment for arsenic, risks from the rice were exposed to one to two out of 10,000 people in Boeun and one of 1,000 people in Sanggok. These results showed that the cancer risks of arsenic in both areas were 10~100 times greater than the acceptable cancer risk range of US EPA ($1{\times}10^{-6}{\sim}1{\times}10^{-5}$). CONCLUSION(S): Therefore, if these two local residents consume continuously with arsenic contaminated soil, ground water, and rice, the adverse health effects (carcinogenic potential) would be more increased.

충청·전라지역 산업단지 주변지역에서의 벤젠 인체 위해성 평가 (Human Health Risk Assessment of Benzene from Industrial Complexes of Chungcheong and Jeonla Province)

  • 장용철;이성우;신용승;김희갑;이종현
    • 환경영향평가
    • /
    • 제20권4호
    • /
    • pp.497-507
    • /
    • 2011
  • This research studied human health risk assessment of benzene from industrial complexes of Chungcheong Province (Seosan industrial complex) and Jeonla Province (Iksan industrial complex and Yeosoo industrial complex). The residents near the industrial complexes areas can be often exposed to volatile organic compounds (e.g., benzene, toluene, xylenes) through a number of exposure pathways, including inhalation of the organic pollutant via various environmental matrices (air, water and soil), contaminated water, and soil intake. Benzene is well known to be a common carcinogenic and toxic compound that is produced from industrial and oil refinery complexes. In this study, a number of samples from water, air, and soil were taken from the residential settings and public school zones located near the industrial complex sites. Based on the carcinogenic risk assessment, the risk estimates were slightly above $10{\times}10^{-6}$ at all three industrial sites. According to deterministic risk assessment, inhalation was the most important route. The distribution of benzene in the environment would be dependent on vapor pressure, and the physical property influencing the extent of the potential risks. Non-carcinogenic risk assessment of benzene shows that the values of Hazard Index(HI) were much lower than 1.0 at all industrial complexes. Therefore, benzene was not a cause of concern in terms of non-carcinogenic risk posed to the residents near the sites. When compared to probabilistic risk assessment, the CTE(central tendency exposure) cancer risk values of deterministic risk assessment were close to the mean values predicted by the probabilistic risk assessment. The RME(reasonable maximum exposure) values fell within the range of 95% to 99.9% estimated by the probabilistic risk assessment. Since the values of carcinogenic risk assessment were higher than $10{\times}10^{-6}$, further detailed monitoring and refined risk assessment for benzene may be warranted to estimate more reliable and potential inhalation risks to receptors near the industrial complexes.

환경매체별 카드뮴의 생태위해성평가 (Ecological Risk Assessment for Cadmium in Environmental Media)

  • 이병우;이병천;윤효정;박경화;김필제
    • 한국환경보건학회지
    • /
    • 제44권6호
    • /
    • pp.548-555
    • /
    • 2018
  • Objectives: We conducted ecological risk assessment for cadmium, a heavy metal and carcinogen, to identify safety standards by environmental media and to determine its impact on ecosystems by estimating and evaluating exposure levels. Methods: Species sensitivity distributions (SSDs) were generated using ECOTOX DB. A hazardous concentration of 5% (HC5) protective of most species (95%) in the environment was estimated. Using this estimate, predicted no effect concentrations (PNECs) were calculated for aquatic organisms. Based on the calculated PNECs for aquatic organisms, PNEC values for soil and sediment were calculated using the partition coefficient. Predicted exposure concentrations (PECs) were also calculated from environmental monitoring data with hazard quotients (HQs) calculated using PNECs for environmental media. Results: Chronic toxicity data were categorized into four groups and 11 species. In species sensitivity distribution (SSD) analysis, HC5 was $0.340{\mu}g/L$. Based on this value, the PNEC value for aquatic organisms was calculated as $0.113{\mu}g/L$. PNEC values for soil and sediments using a partition coefficient were calculated as 15.02 mg/kg and 90.61 mg/kg, respectively. In an analysis of environmental monitoring data, PEC values were calculated as $0.017{\mu}g/L$ for water, 1.01 mg/kg for soil, and 0.521 mg/kg for sediment. Conclusions: HQs were 0.150, 0.067 and 0.006 for water, soil and sediment, respectively. HQs of secondary toxicity were 0.365 for birds and 0.024 for mammals. In principle, it is judged that an HQ above 1 indicates a high level of risk concern while an HQ less than 1 indicates an extremely low level of risk concern. Therefore, with HQs of cadmium in the environment being <1, its risk levels can be considered low for each media.

유류 오염지역 토양의 위해성 평가 및 사전복원목표 산정 사례연구 (Case Study of Health Risk Assessment and Preliminary Remediation Goals Calculation for the Petroleum Contaminated Site)

  • 정규혁
    • Environmental Analysis Health and Toxicology
    • /
    • 제17권4호
    • /
    • pp.347-355
    • /
    • 2002
  • As concerns on the effects of soil contamination on human health have grown, more efforts have been made to quantify the effects. One of such efforts is the development of risk assessment methodology. The fundamental objectives of this approach is to investigate the alternative options that reduce the risk of hazardous chemicals results from environmental pollution, which will eventually lead to an accomplishment of removement of identified toxicants in polluted environment. The U.S. EPA Risk Assessment guidance for the superfund (RAGS) provides a methods for assessing the health risk of contaminated soils and determining the preliminary remediation goals (PRGs). Using this approach, we assessed the health risk and preliminary remediation goals of petroleum contaminated site in Kyounggi province.

일본의 토양지하수오염 및 복원사례 (The Status of Soil and Groundwater Contamination in Japan and Case Studies of their Remediation)

  • Komai, Takeshi;Kawabe, Yoshishige
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.25-39
    • /
    • 2003
  • Risk and exposure assessment for subsurface environment is very important for both aspects of health and environmental protection as well as making decision of remedial goal for engineering activities. Exposure due to hazardous chemicals in the subsurface environment is essential to assess risk lev121 to individual person, especially from soil and groundwater environmental media. In this paper, the status of soil and groundwater contamination is presented to discuss on the problem for environmental risk assessment. The methodologies of fate and exposure models are also discussed by conducting the case studies of exposure assessment for heavy metals, organic compounds, and dioxin compounds. In addition, the structure of exposure models and available data for model calculation are examined to make clear more realistic exposure scenarios and the application to the practical environmental issues. Three kinds of advanced remediation techniques for soil and groundwater contamination are described in this paper, The most practical method for VOCs is the bio-remediation technique in which biological process due to consortium of microorganisms can be applied. For more effective remediation of soil contaminated by heavy metals we have adopted the soil flushing technique and clean-up system using electro-kinetic method. We have also developed the advanced techniques of geo-melting method for soil contaminated by DXNs and PCB compounds. These techniques are planed to introduce and to apply for a lot of contaminated sites in Japan.

  • PDF