• Title/Summary/Keyword: soil environment

Search Result 7,314, Processing Time 0.036 seconds

Distribution Characteristics of Soil Contaminants in Hanam Industrial Complex, Gwangju by land use (토지이용실태에 따른 하남산업단지 토양오염물질 분포 특성에 관한 연구)

  • Kong, Hwa-jin;Wi, Whan;Kim, Seung-ho;Park, Ok-hyun;Jang, Gil-sik;Jung, Hee-yun;Bae, Seok-jin;Jeong, Suk-kyung;Cho, Young-gwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.2
    • /
    • pp.30-39
    • /
    • 2018
  • Soil contamination survey was conducted during March - July, 2017 to obtain soil contamination profile of 16 organic and inorganic contaminants in Hanam industrial complex located in Gwangju, Korea. The concentrations of all surveyed contaminants except Cd showed were within 0.3~1.5 times of their natural background levels. Cd showed concentrations as high as 6.9 times of the background level, signifying the influence of the metal processing facilities in the complex. The concentrations of Zn, Pb and Hg in areas nearby industrial facilities were 1.3~5.5 times higher than those within the facility and green area. The concentration of Cu in the green area was 1.4~2.9 times higher than in other areas. The Soil Pollution Index (SPI) analysis revealed 54% of the total area belong to first-grade soil, 43% to second-grade, and 3% to third-grade. The Enrichment Factor (EF) of Zn, Pb, and Cd were 9.2, 15.6, and 88.5, respectively, indicating high accumulation and contamination of the soil with Cd.

Studies on the Mobility of Groundwater in Soil Environment by Capillary Rise Observation (모세관 현상에 의한 토양 환경에서의 지하수 거동에 관한 연구)

  • Choi, Sua;Choi, Eun-Jin;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.115-119
    • /
    • 2011
  • The mobility of groundwater in the soil environment has an important role in the soil environment and absorption of plant. Therefore, studies on the mobility of groundwater considering the physical and chemical properties of soil is very important. In this study, movement of water due to change in soil particle size were observed by capillary rise. The height of the capillaries was measured according to capillary diameter, temperature and solution concentration. The inner diameter of each capillary itself is 0.012, 0.016, 0.024, 0.027 cm, and experiments were performed at $22^{\circ}C$. As a result, the height of the capillaries decreased with increasing capillary diameter, and the solution temperature but increased with increasing concentration. Changes in the height of the capillaries are interpreted to related with surface tension by the Young-Laplace equation. Also on the mobility of groundwater, the increase of water and soil temperatures can be significant factors caused by ion strength and global warming as well as pores in the soil particles. The results of this study is considered to provide the basic data on the behavior of groundwater in the soil environment.

Organic Pollutant Transport in Unsaturated Porous Media by Atmospheric Breathing Processes( I ) - Partition Coefficient -

  • Ja-Kong;Lim, Jae-Shin;Do, Nam-Young
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.11a
    • /
    • pp.50-53
    • /
    • 1996
  • This paper reports the experimental results for the determination of the overall partition coefficient of VOCs in unsaturated soil, A chromatographic method was used for the determination of gaseous partition coefficients to natural soil under various water content conditions. The equilibrium vapor pressure of water over saturated salt solution was used to fix the relative humidity of the air and control the water content of the soil systems. The transport behavior was studied for dichloromethane, trichloroethane and dichlorobenzene pollutants, with log octanol-water partition coefficients(log $K_{ow}$ ) which range from 1.25 to 3.39, or water to soil partitioning which varies by 135 times; water solubility constants which vary by 3 times; and vapor pressures which range from 1 to 362 torr. Water content of the soil had a pronounced effect on the effective partition coefficient(between gas and soil + water stationary phase) as well as on the effective dispersion coefficient.

  • PDF

Effects of Biochar on Soil Quality and Heavy Metal Availability in a Military Shooting Range Soil in Korea

  • Lee, Sung-Eun;Ahmad, Mahtab;Usman, Adel A.R.A.;Awad, Yasser M.;Min, Sun-Hong;Yang, Jae-E;Lee, Sang-Soo;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.67-77
    • /
    • 2011
  • Heavy metal remediation in shooting range soil is a challenge over the world. The excessive Pb accumulation in the soil can deteriorate soil quality and fertility. The objectives of this research were to evaluate the efficiency of biochar (BC) in improving the physicochemical and biological properties of the soil and to evaluate its effect on Pb availability in a military shooting range soil. Sandy loam soil was collected from shooting range of Gyeonggi Province, South Korea and was incubated for 30 days with different application rates (0-30% w $w^{-1}$) of BC. The results showed that the addition of BC increased aggregate stability, nitrogen (N) and phosphorus (P) contents, and enzyme activities in soil. Sequential extraction showed that residual and organic bound fractions in the soil amended with BC increased by 33.1 and 16.7%, respectively, and the exchangeable fraction decreased by 93.7% in the soil amended with BC, compared to the unamended soil. We concluded that the application of BC could not only improve physicochemical and biological soil qualities but also stabilize Pb in a shooting range soil.

Measurement and Spatial Analysis of Uranium-238 and Radon-222 of Soil in Seoul

  • Oh, Dal-Young;Shin, Kyu-Jin;Jeon, Jae-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.33-40
    • /
    • 2017
  • Identification of radon in soil provides information on the areas at risk for high radon exposure. In this study, we measured uranium-238 and radon-222 concentrations in soil to assess their approximate levels in Seoul. A total of 246 soil samples were taken to analyze uranium with ICP-MS, and 120 measurements of radon in soil were conducted with an in-situ radon detector, Rad7 at a depth of 1-1.5 m. The data were statistically analyzed and mapped, layered with geological classification. The range of uranium in soil was from 0.0 to 8.5 mg/kg with a mean value of 2.2 mg/kg, and the range of radon in soil was from 1,887 to $87,320Bq/m^3$ with a mean value of $18,271Bq/m^3$. The geology had a distinctive relationship to the uranium and radon levels in soil, with the uranium and radon concentrations in soils overlying granite more than double those of soils overlying metamorphic rocks.

Application of KORSLE to Estimate Soil Erosion at Field Scale (한국형 토양유실공식에 의한 토양유실량 현장예측)

  • Song, Jae Min;Yang, Jae E;Lim, Kyoung Jae;Park, Youn Shik
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.5
    • /
    • pp.31-41
    • /
    • 2019
  • In 2013, the Ministry of Environment in South Korea promulgated a new regulatory bulletin that contained revised enforcement ordinance on soil management protocols. The bulletin recommends the use of Universal Soil Loss Equation (USLE) for the soil erosion estimation, but USLE has limited applicability in prediction of soil erosion because it does not allow direct estimation of actual mass of soil erosion. Therefore, there is a great need of revising the protocol to allow direct comparison between the measured and estimated values of soil erosion. The Korean Soil Loss Equation (KORSLE) was developed recently and used to estimate soil loss in two fields as an alternative to existing USLE model. KORSLE was applied to estimate monthly rainfall erosivity indices as well as temporal variation in potential soil loss. The estimated potential soil loss by KORSLE was adjusted with correction factor for direct comparison with measured soil erosion. The result was reasonable since Nash-Stucliff efficiency were 0.8020 in calibration and 0.5089 in validation. The results suggest that KORSLE is an appropriate model as an alternative to USLE to predict soil erosion at field scale.

A Study on the Evaluation Method of National Technical Qualification for Soil Environment Based on NCS (NCS 기반 토양환경분야 국가기술자격 실기시험 평가방법에 관한 연구)

  • Lee, Jeong-Kyu;Phae, Chae-gun
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.98-104
    • /
    • 2017
  • Human Resources Development of Korea has been practicing performance evaluation for occupational qualification licences in environmental sectors that include water, air, and wastes management, but not soil. The purpose of the study was to improve overall quality of the national qualification test in the soil sector to better train applicants based on National Competency Standards (NCS), which is designed to emphasize site-specific conditions and knowledge. This study systematically analysed the current licence test in the soil sector with respect to qualification units, performance criteria, knowledge, techniques, and attitude as described in NCS. Furthermore, test evaluation was conducted to examine the validity of the revised licence test. The test results indicated the revised test method would bring positive outcomes to the related industry. Upon the reviews and amendments by the field experts, the result of this study could serve as a framework to the development of more robust and reliable licence test.

A Study on Effective Management Scheme for Soil and Groundwater Contaminated by Radioactive Materials Due to Nuclear Accidents (원전사고에 따른 토양.지하수 방사성오염의 효과적인 관리 연구)

  • Kim, Hee-Joo;Hyun, Yun-Jung;Kim, Young-Ju;Hwang, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.113-121
    • /
    • 2011
  • In this study, we suggested the management scheme of analyzing the national and oversea related policy against soil and groundwater contamination by radioactive materials due to nuclear accidents. In Korea, we need to remedy swiftly the contaminated land due to intensive land development demand. So, we need to develop more effective management scheme to recover actively the land contaminated by radioactive materials. We require to improve monitoring network, to expand media-specific monitoring system, to prepare management system for remediation of contaminated land, and to develop flow work for soil and groundwater remediation.