• Title/Summary/Keyword: soil dispersion

Search Result 200, Processing Time 0.02 seconds

Calculation of the Dispersion Coefficient by the Dissolution Experiment of DNAPL Pool (DNAPL Pool의 용해실험에 의한 분산계수 산정)

  • 정경영;배열호;최상일
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.19-27
    • /
    • 1996
  • Nonaqueous phase liquids(NAPL) not readily dissolved in water exist as a separate fluid phase. Groundwater contamination by NAPL such as organic solvents and petroleum hydrocarbons becomes major public concerns because of their long-term persistence in the subsurFace and their ability to contaminate large volumes of wate. Dense.-than-water NAPL(DNAPL) spilled into the subsurface penetrate through the saturated zone and ultimately form DNAPL pools on the bottom of the aquifer. The dissolution of DNAPL from these pools depends on the molecular diffusion coefficient, the vertical dispersivity, the groundwater velocity, the solubility, and the pool length. In this study, the vertical transverse dispersion coefficients for simulating the dissolution of DNAPL from such pools were obtained from the dissolution experiment. Under the experimental conditions used, the vertical transverse dispersion coefficients calculated were 1.86$cm^2$/day, 2.90$cm^2$/day and 4.51$cm^2$/4ay for seepage velocities of 59.2cm/day, 94.3cm/day and 158.0cm/day, respectively. And the vertical transverse dispersivity was 0.03024cm.

  • PDF

An Analysis on Remediation of Soil Contaminted with Cobalt by Solvent Flushing

  • Kim, Gyenam;Kyungsuk Suh;Huijun Won;Joonbo Shim;Wonzin Oh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.342-349
    • /
    • 2000
  • A soil whose texture is silt loam was collected for the study from an area around a nuclear facility in Korea. The equilibrium sorption coefficient between Co$^{2+}$in water and the soil was 1.51/kg, on the other hand, that between Co$^{2+}$ in EDTA and the soil was 0.21/kg. The values calculated by the developed nonequilibrium sorption code corresponded to the experimental values better than those calculated by the existing equilibrium sorption code. When an EDTA solution was used as a solvent to decontaminate Co$^{2+}$ in the soil column, the relative Co$^{2+}$ concentrations of the effluent were higher at 2~10 pore volumes than those of the case using water. The soil in the column was decontaminated by 95.5% of the total amount of Co$^{2+}$ after being flushed with EDTA solution of 20 pore volumes.e volumes.

  • PDF

Hydrodynamic Dispersion Characteristics of Multi-soil Layer from a Field Tracer Test and Laboratory Column Experiments (현장추적자시험과 실내주상실험을 이용한 복합토양층의 수리분산특성 연구)

  • Kang, Dong-Hwan;Yang, Sung-Il;Kim, Tae-Yeong;Kim, Sung-Soo;Chung, Sang-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • This study analyzed for hydrodynamic dispersion characteristics of multi-soil layer (Silt and clay, Find sand, Coarse sand), data of a field tracer test on the multi-soil layer and data of laboratory column experiments on the samples on each soil layers. Through the analysis of permeability and flow, MS (Silt and clay) and FS (Fine sand), which were low effective porosity, were higher average linear velocity while CS (Coarse sand), which was high effective porosity, was higher hydraulic conductivity. Hydraulic conductivity function based on average soil particle diameter was assumed Y=$3.49{\times}10^{-8}e^{15320x}$ and coefficient of determination was 0.90. Average linear velocity function based on average soil particle diameter was assumed Y=$1.88{\times}10^{-7}e^{11459x}$ and coefficient of determination was 0.81. Longitudinal dispersivity function based on average soil particle diameter was Y = 0.00256$e^{5971x}$ and coefficient of determination was 0.98. According to the linear regression analysis of average linear velocity and longitudinal dispersivity, assumed function was Y = 21.7527x + 0.0063, and coefficient of determination was 0.9979. The ratio of field scale/laboratory scale was 54.09, it exhibited scale-dependent effect of hydrodynamic dispersion. Field longitudinal dispersivity (1.39m) was 7.47 times as higher than longitudinal dispersivity estimated by the methods of Xu and Eckstein (1995). Hydrodynamic dispersion on CS layer was occurred mainly by diffusion flow in the test aquifer.

The Surface Tension Components of Mixed Surfactant Solutions (혼합계면활성제 용액의 표면장력 성분)

  • 정혜원;윤혜신
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.4
    • /
    • pp.690-696
    • /
    • 1996
  • In order to study the affect of surfactants on the soil removal, the dispersion and polar force components of surface tension for surfactant solutions (such as LAS, AS, AOS, AES, AE) were calculated using extended Fowkes equation. The contact angles on paraffin and surface tension of surfactant solutions were measured. Cmcs of LAS, AS, AES and AE were below the concentration of 0.05%, but the cmc of AOS was between 0.05% and 0.1%. The surface tension of AE was lowest but the dispersion force component was greastest. Total surface tension of every mixed anionic surfactant was lower than that of single surfactants, and the dispersion force components were almost decreased. The addition of sodium carbonate to the sufactant solutions decreased the surface tension, and the surface tensions of surfactant solutions were lowered after washing.

  • PDF

Evaluation of Numerical Experiment of Pollution Dispersion on the Sewer Crack Occurrence (하수관거 균열발생에 따른 오염확산의 수치실험 평가)

  • Park, Jaesung;Bae, Wooseok;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.5-9
    • /
    • 2008
  • Because sewer is embedded in land, the pollutant permeating to underground so fast can cause contamination of soil when crack of sewer occurs. In this study, numerical modelling on dispersion of pollutant at sewer crack was performed. Based upon the study, the following conclusions were obtained. It was shown that transfer direction of pollutant was similar to the flow with topography slope of surface. It was exposed that the pollutant permeated to 8~10m depth. It is expected to offer efficiency in sewer management in the future through this research.

  • PDF

Experimental and modelling study of clay stabilized with bottom ash-eco sand slurry pile

  • Subramanian, Sathyapriya;Arumairaj, P.D.;Subramani, T.
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.523-539
    • /
    • 2017
  • Clay soils are typical for their swelling properties upon absorption of water during rains and development of cracks during summer time owing to the profile desorption of water through the inter-connected soil pores by water vapour diffusion leading to evaporation. This type of unstable soil phenomenon by and large poses a serious threat to the strength and stability of structures when rest on such type of soils. Even as lime and cement are extensively used for stabilization of clay soils it has become imperative to find relatively cheaper alternative materials to bring out the desired properties within the clay soil domain. In the present era of catastrophic environmental degradation as a side effect to modernized manufacturing processes, industrialization and urbanization the creative idea would be treating the waste products in a beneficial way for reuse and recycling. Bottom ash and ecosand are construed as a waste product from cement industry. An optimal combination of bottom ash-eco sand can be thought of as a viable alternative to stabilize the clay soils by means of an effective dispersion dynamics associated with the inter connected network of pore spaces. A CATIA model was created and imported to ANSYS Fluent to study the dispersion dynamics. Ion migration from the bottom ash-ecosand pile was facilitated through natural formation of cracks in clay soil subjected to atmospheric conditions. Treated samples collected at different curing days from inner and outer zones at different depths were tested for, plasticity index, Unconfined Compressive Strength (UCS), free swell index, water content, Cation Exchange Capacity (CEC), pH and ion concentration to show the effectiveness of the method in improving the clay soil.

A Study on Groundwater Age Dating Methods Using Tritium (삼중수소를 이용한 지하수 연령측정 방법에 관한 연구)

  • 오진석;김선준
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.2
    • /
    • pp.49-57
    • /
    • 1995
  • Areas of Chungyang in Chungcheongnamdo, Cheju island and Georgia in U.S.A. were selected to calculate their groundwater ages and dispersion parameters using tritium. Piston flow model, Completely mixing model and Dispersion binomial model which calculate men residence times, and Dispersion normal model and Dispersion model(C$\_$FF) which calculate mean residence times and dispersion parameters simultaneously were applied. Since the input data, tritium concentrations of rainwaters, lack in part, tritium input function was prepared using the correlation of tritium concentrations of rainwaters of Pohang, Korea and Ottawa, Canada. Similar results of PFM and DBM reflect the intrinsical similarity of two models, assumption of low dispersion. The ages of sites of showing relatively higher tritium concentrations than other sites in the sam, region were not calculated by CMM. Since the calculations of DNM and DM(C$\_$FF/) provide the combination of wide ranges of parameters and groundwater ages, the ranges of dispersion parameters were narrowed down under the assumption that ages calculated by PFM and DBM are correct. Since large variation of tritium concentrations of outflows in a same region may reflect the different characteristics of each groundwater flow regime, using only one specific model on a whole region is not recommended.

  • PDF

충북지역 폐금속광산 주변 토양오염도 평가

  • Jeong Myeong-Chae;Gang Man-Hui;Ji Han-Gu;Hwang Beom-Sun;Park Jeong-Gu;Jeong Hyeon-Seok
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.24-27
    • /
    • 2005
  • This study has focused on investigation on As and heavy metal contamination derived from metalliferous mining activities in the Choongbuk Province in Korea. Soil, mine effluent, surface water and ground water samples were taken in and around 27 abandoned metal mines, and analyzed for As, Cd, Cu, Ni, Pb and Zn using AAS and anions in water samples using IC. In general, the heavy metal concentrations in soils decreased with Increasing distance from the each mine audit. Tailings and mine waste soils from several mines contained over the guideline of Soil Conservation Act in Korea. Soil samples from the Seobo, Honga, Daehwa, Jeungjadong, Youngbo and Munbaek mines contained over the action levels of the metals due to intensive mining activities. Therefore, a proper remediation work needs to control the metal dispersion around the mines.

  • PDF

Multi-Region Model of Solute Transport in Soil for the Preferential Flow (Preferential 흐름에 의한 토양내의 다영역 용질이동 모델)

  • 안병기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.2
    • /
    • pp.71-77
    • /
    • 2000
  • A multi-region model for solute transport through saturated soils has been developed to describe preferential flow. The model consists of numerous discrete pore groups, which are characterized by a discrete dispersion coefficient, flow velocity, and porosity . The hydraulic properties for each pore group are derived from a soil's hydraluic conductivity and soil water characteristic functions . Flow in pore group is described by the classical advection-disersion equation (ADE). An implict finite difference scheme was applied to the governing equation that results in a block-tridiagonal system of equations that is very efficient and allows the soil to be divided into any number of pore groups. The numerical technique is derived from methods used to solve coupled equations in fluid dynamics problems and can also be applied to the transport of interacting solutes. The results of the model are compared to the experimental data from published papers. This paper contributes on the characteristics of the method when applied to the parallel porosity model to describe preferential flow of solutes in soil.

  • PDF

Soil Water and Nutrient Movement Model Under Different Soil Water Conditions -I. Determination of Retardation and Hydrodynamic Dispersion Coefficient of Solute of an Unsaturated Sandy Loam Soil (토양수분(土壤水分) 분포(分布)에 따른 토양내(土壤內) 양수분(養水分) 이동(移動) 모형(模型) -I. 불포화(不飽和) 토양(土壤)에서 용질(溶質)의 이동지연(移動遲延)과 수리동적(水理動的) 분산계수(分散係數)의 측정(測定))

  • Jung, Yeong-Sang;Woo, Deog-Ki;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 1990
  • Retardation and hydrodynamic dispersion coefficient necessary for model of water and solute movement in a soil were determined for horizontal soil column with different initial soil water conditions. The soil columns were compacted with sandy loam soil. The bulk density was $1,350+50kg/m^3$, and initial water contents were 0.05, 0.08 and 0.14. Advancement of 0.05% $CaSO_4$ solution was used as the standard and advancements of 0.5% KCl, $CaCl_2$ and $KH_2PO_4$ were compared. Retardation of non-reactive $Cl^-$ was related with the initial soil water content, ${\theta}n$, as ${\theta}/({\theta}-{\theta}n)$, and anion exclusion was ignored. Retardations of active $K^+$, $Ca^{{+}{+}}$ and $H_2PO_4{^-}$ were related as 1/(R+1) $^*{\theta}/({\theta}-{\theta}n)$, in which R was retardation coefficient. Measured R was 0.64 for $K^+$, 0.80 for $Ca^{{+}{+}}$ and 2.6 for $H_2PO_4{^-}$, respectively. Calculated R using Langmuir adsorption isotherm showed fair degree of applicability. Soil water diffusivity, $D({\theta}),m^2/sec$, calculated for different initial water content showed unique function as $$log(D({\theta}))=13.448{\theta}-9.288$$ Hydrodynamic dispersion coefficient of $Cl^-$ above soil water content 0.36 was similar to soil water diffusivity and decreased to near self diffusion coefficient at soil water content near 0.2. Those of $K^+$, $Ca^{{+}{+}}$ $H_2PO_4{^-}$ at soil water content of 0.38 were $5.5{\times}10^{-6}$, $2.4{\times}10^{-6}$ and $7.1{\times}10^{-7}m^2/sec$ and decreased rapidly with decreasing soil water content lower than 0.36.

  • PDF