• Title/Summary/Keyword: soil deposits

Search Result 246, Processing Time 0.022 seconds

Parent Materials and Pedogenic Properties of the "Yongil" Series Distributed in Eastern Coastal Area of Korea (한국 동남해안지대에 분포된 영일통의 모재와 생성학적 특성)

  • Yun, Eul-Soo;Jung, Yeun-Tae;Son, Il-Soo;Jung, Ki-Yuol;Lee, Dong-Chang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.3
    • /
    • pp.137-144
    • /
    • 2002
  • To obtain the basic information about pedo-genetic properties and origin of the parent materials of "Yongil" series in Korea, this study was conducted. The soil characteristics such as chemical and sand particles of typifying pedon, and distributional patterns in the area were analysed. The typifying pedon of "Yongil" series was distributed on the top of rolling area in the eastern coastal area of Korea, Yonggan-ri, Heunghae-eup, Pohang-si, Gyongbuk province. The results are as follows; The "Yongil" series in Korea was distributed on the rolling hill under altituede of 50m, and was used for cultivated upland, and the total acreage about 376ha. The content of sand was more than 50%, however the clay content in the depth of 40~100cm of the soil profile rapidly increased. The medium sand (0.5~0.1mm in size) are dominant among sand fraction, but coarse one are rare. So the rate of medium to total sand was higher in IIB horizon as 0.62~0.76 than A and C horizons. The content of heavy minerals in medium sand was low as 1.0~6.6% and the ratio of quartz to feldspars was higher in Ap2 and B1 horizon as 1.7 than IIB horizon which had less than 1.39. The cumulative curves of sand particles in Yeongil series showed the well sorted and differ from residuum soils derived from sand stone, but similar to dune soils(Haeri series). So it could be deducted from this study that "Yeongil" series are aeolian deposits derived from aeolian materials and have bisequum profile; the upper part depth of 40cm was recent cover sand, the horizon of 40~100cm depth was developed in Pleistocene epoch from the same materials.

Site Classification for Incheon According to Site-Specific Seismic Response Parameters by Estimating Geotechnical Spatial Information Based on GIS (GIS 기반 지반공간정보 추정을 통한 부지고유 지진응답 매개변수 기반 인천 지역의 부지분류)

  • SUN, Chang-Guk;KIM, Han-Saem
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.17-35
    • /
    • 2016
  • Earthquake-induced disasters are often more severe in locations with soft soils than firm soils or rocks due to differences in ground motion amplification. On a regional scale, such differences can be estimated by spatially predicting subsurface soil thickness over the entire target area. In general, soil deposits are generally deeper in coastal or riverside areas than in inland regions. In this study, a coastal metropolitan area, Incheon, was selected to assess site effects and provide information on seismic hazards. Spatial prediction of geotechnical layers was performed for the entire study area within the GIS framework. Approximately 7,000 existing borehole drilling data in the Incheon area were gathered and archived into the GIS Database (DB). In addition, surface geotechnical data were acquired from a walkover survey. Based on the built geotechnical DB, spatial zoning maps of site-specific seismic response parameters were created and presented for use in a regional seismic strategy. Site response parameters were performed to determine site coefficients for seismic design over the entire target area and compared with each other. Site classifications and subsequent seismic zoning were assigned based on site coefficients. From this seismic zonation case study in Incheon, we verified that geotechnical GIS-DB can create spatial zoning maps of site-specific seismic response parameters that are useful for seismic hazard mitigation particularly in coastal metropolitan areas.

Design for Installation of Suction Piles in Sand Deposits for Mooring of Floating Offshore Structures (부유식 해상구조물의 계류를 위한 사질토 지반의 석션파일 설계)

  • Park, Chul-Soo;Lee, Ju-Hyung;Baek, Du-Hyun;Do, Jin-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.33-44
    • /
    • 2014
  • The preliminary design of suction pile as the supporting system for concrete floating structures was performed for the pilot project of the southwest coast area in Korea. Prior to starting design work, site conditions of the area including ground and hydraulic conditions, and a 100-year return period external force were throughly evaluated. The suction pile for mooring of the offshore floating structures has to satisfy the lateral resistance against external force as well as the penetration ability according to the soil conditions such as soil types, shear strengths, effective stresses, and seepage forces. In the design, the required penetration depths, which were stable for lateral resistance, were evaluated with the diameters of cylindrical suction pile as the final installing ones. And the design suction pressures at each penetrating depths, at which sand boiling did not occur, were assessed through the comparison of penetration and penetrationresistance forces. As a result, it was impossible for suction piles with the diameter range of 3.0~5.0 m to penetrate into required penetration depths. On the other hand, suction piles with the diameter range of 6.0 m and 7.0 m satisfied both the horizontal stability and the penetration ability by design suction pressures at the required penetration depths of 8.5 m and 8.0 m, respectively.

A Proposition of Site Coefficients and Site Classification System for Design Ground Motions at Inland of the Korean Peninsula (국내 내륙의 설계 지반 운동 결정을 위한 지반 증폭 계수 및 지반 분류 체계 제안)

  • Sun Chang-Guk;Chung Choong-Ki;Kim Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.101-115
    • /
    • 2005
  • For the site characterization at two inland areas, Gyeongju and Hongsung, which represent geomorphic and geologic characteristics of inland region in Korea, in-situ seismic tests containing borehole drilling investigations and resonant column tests were peformed and site-specific seismic response analyses were conducted using equivalent linear as well as nonlinear scheme. The soil deposits in Korea were shallower and stiffer than those in western US, from which the site coefficients and site classification system in Korea were derived. Most sites were categorized as site classes C and D based on the mean shear wave velocity $(V_s)$ of the upper 30 m $(V_s30)$, ranging between 250 and 650 m/s. According to the acceleration response spectra determined from the site response analyses, the site coefficients specified in the current Korean seismic design guide underestimate the ground motion in the short-period band and overestimate the ground motion in mid-period band. These differences can be explained by the differences in the bedrock depth and the soil stiffness profile between Korea and western US. The site coefficients, $F_a$ for short-period and $F_v$ for mid-period, were re-evaluated and the site classification system, in which sites C and D were subdivided according to $V_s20,\;V_s15,\;and\;V_s10$ together with the existing $V_s30$ was introduced accounting for the local geologic conditions at inland region of the Korean peninsula. The proposed site classification system in this paper is still rudimentary and requires modification.

Evaluation of Required Discharge Capacity of PVD with Various Core Types (코어형태에 따른 연직배수재의 소요통수능력평가)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Kang, Jeong-Gu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • Recently, the demand for industrial and residental land are increasing with economic growth, but it is difficult to acquire areas for development with good ground condition. For efficient and balanced development of land, new development projects are being carried out not only the areas with inland but those with the soft ground as well. As soft grounds have complex engineering properties and high variations such as ground subsidence especially when their strength is low and depth is deep, we need to accurately analyze the engineering properties of soft grounds and find general measures for stable and economic design and management. Vertical drain technology is widely used to accelerate the consolidation of soft clay deposits & dredged soil under pre-loading and various types of vertical drain are used with there discharge capacity. Under field conditions, discharge capacity is changed with various reason, such as soil condition, confinement pressure, long-term clogging and folding of vertical drains and so on. Therefore, many researcher and engineer recommend the use of required discharge capacity. In this paper, the experiment study were carried out to obtain the discharge capacity of four different types of vertical drains by utilizing the large-scale model tests and the required discharge capacity was calculated by several methods.

  • PDF

Probabilistic Three-Dimensional Slope Stability Analysis on Logarithmic Spiral Failure (대수누선파양에 대한 확률론적 3차원 사면안정해석)

  • 서인석;김영수
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.121-140
    • /
    • 1994
  • This paper presents the probabilistic model to evaluate the three-dimensional stability of layered deposits and c-0 soil slopes. Rotational slides are assumed with a cylindroid control part terminated with plane ends. And the potential failure surfaces in this study are assumed with the logarithmic spiral curve refracted at boundary of layers. This model takes into consideration the spatial variabilities of soil properties and the uncertainties stemming from insufficient number of samples and the discrepancies between laboratory measured and in -situ values of shear strength parameters. From the probabilistic approxi mate method (FOSM and SOSM method), the mean and variance of safety factor are calculated, respectively. And the programs based on above models is developed and a case study is analysed in detail to study the sensitivity of results to variations in different parameters by using the programs developed in this study. On the basis of thin study the following conclusions could be stated : (1) The sensitivity analysis shown that the probability of failure is more sensitive to the uncertainty of the angle of internal friction than that of the cohesion, (2) The total 3-D proability of failure and the critical width of failure are significantly affected by total width of slope. It is found that the total 3-D probability of failure and the critical width of failure increase with increasing the slope width when seismic forces do not exist and the total 3-D probability of failure increases with increasing the slope width and the critical width of failure decreases when seismic intensity is relatively large, (3) A decrease in the safety factor (due to effect such as a rise in the mean ground water level, lower shear strength parameters, lower values for the correction factors, etc.) would result in reduction in the critical width of failure.

  • PDF

LPI-based Assessment of Liquefaction Potential on the West Coastal Region of Korea (액상화 가능 지수를 이용한 국내 서해안 지역의 액상화 평가)

  • Seo, Min-Woo;Sun, Chang-Guk;Oh, Myoung-Hak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.1-13
    • /
    • 2009
  • Liquefaction is a significant threat to structures on loose saturated sandy soil deposits in the event of an earthquake, and can often cause catastrophic damage, economic loss, and loss of life. Nevertheless, the Korean peninsula has for a long time been recognized as a safe region with respect to the hazard of liquefaction, as the peninsula is located in a moderate seismicity region, and there have been no reports of liquefaction, with the exception of references in some historical documents. However, some earthquakes that have recently occurred in different parts of the world have led to liquefaction in non-plastic silty soils, a soil type that can be found in many of the western coastal areas of Korea. In this study, we first present procedures for evaluating the liquefaction potential, and calculate the liquefaction potential index (LPI) distribution at two western coastal sites using both piezocone penetration test (CPTu) data and standard penetration test (SPT) data. The LPI is computed by integrating liquefaction potential over a depth of 20m, and provides an estimate of liquefaction-related surface damage. In addition, we compared the LPI values obtained from CPTu and SPT, respectively. Our research found that the CRR values from CPTu were lower than those from the SPT, particularly in the range between 40 and 120 for the corrected tip resistance, (qc1N)CS, from the CPTu, or in the range of CRR less than 0.23, resulting in relatively high LPI values. Moreover, it was observed that the differences in the CRR between the two methods were relatively higher for soils with high fine contents.

Development of Geochemical Tracers to Identify a Specific Source Region of Mineral Dust in China and Preliminary Test of Their Applicability (중국 기원 광물성 먼지 입자의 지화학 추적자 개발 및 기초 적용연구)

  • Lee, Sojung;Hyeong, Kiseong;Kim, Wonnyon;Kim, Tae-Hoon
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.169-181
    • /
    • 2019
  • The purpose of this study is to develop geochemical tracers to identify a specific source desert of mineral dust in China using the published data. In addition, we tested the applicability of these tracers to wet-deposits and soil samples collected in Jeju, Korea. Because of similarity in trace elemental compositions of mineral dust from the major arid regions in China, such as Taklimakan, West Ordos (Badain Jaran), East Ordos (Mu Us and Hobq), East Northern China (Horqin), West Northern China (Gurbantunggut), and Chinese Loess Plateau, there has been limited to the use of geochemical data for source identification. Here we propose the four (4) plots using combination of seven (7) geochemical variables as a source indicator to distinguish one from other source regions in China: $\frac{Y}{Tb_N}$ vs. $\frac{Th}{{\Sigma}REE_N}$, $\(\frac{La}{Gd}\)_N$ vs. $\frac{Y}{{\Sigma}REE_N}$, $\frac{Th}{Tb_N}$ vs. $\frac{Y}{Nd_N}$, and $\frac{Th}{Tb_N}$ vs. $\(\frac{Ce}{Ce}\)_N^*$, where $_N$ and $\(\frac{Ce}{Ce}\)_N^*$ stand for values normalized to Post-Archean Average Shale composition and Ce anomaly, respectively. Mineral dusts from aforementioned six major deserts are distinguished one from the others by the combined use of these variables. Jeju rock and soil samples form a separate domain from Chinese mineral dusts in all four plots. In contrast, most of Jeju dust samples were comparable with the West Ordos desert (Badain Jaran) domain, indicative of strong influence of Badain Jaran dust in Jeju in spring season when the mineral dust was collected. A weak positive Ce anomaly in Jeju samples implies minimal local contribution. Our study suggests that the combination of $\frac{Y}{Tb_N}$ vs. $\frac{Th}{{\Sigma}REE_N}$, $\(\frac{La}{Gd}\)_N$ vs. $\frac{Y}{{\Sigma}REE_N}$, $\frac{Th}{Tb_N}$ vs. $\frac{Y}{Nd_N}$, and $\frac{Th}{Tb_N}$ vs. $\(\frac{Ce}{Ce}\)_N^*$ can be used to identify a specific source region of mineral dust in China as well as Jeju mineral particles.

Analysis of Ecological Function and Percent Passing of Erosion Control Dam by Openness (개방형에 따른 사방댐의 투과율 및 생태적 기능 분석)

  • Koo, Gil-Bon;Ma, Ho-Seop
    • Journal of agriculture & life science
    • /
    • v.52 no.6
    • /
    • pp.1-12
    • /
    • 2018
  • This study was conducted to analyze the openness of erosion control dams situated near mountain stream. The ecological functions of erosion control dams analyzed by such openness for adequately protect and manage the diversity of species and to prevent disasters. The obtained results were as follows. When structurally modifying or changing non-permeable, gravity type dams with a passing rate of less than 1% into open-type dams, the passing rate increased by about 77 times more from 0.72% to 55.8%. Except for closed, gravity type erosion control dams that are constructed with a special purpose such as creating sand deposits and reservoirs, there is a need to construct and improve the dams into permeable type dams that can relatively satisfactorily perform various functions such as carrying soil and sand to the downstream region and create a ecological corridor upstream and downstream for fish and amphibians. The openness based on the blocking height of the erosion control dam varies depending upon the height of the base part and the depth of the substructural part. It must be designed based on the on-site conditions and the purpose of the construction. The functional types of erosion control dams based on the open form of the cross-section as follows: the fish traffic type, flood control type, reservoir type for forest fire control), non-permeability type for soil and rock blocking, net type for blocking the rock flow and the particle screen type.

Changes in Hydrological Characteristics of a Forested Watershed of Mt. Palgong (팔공산 산림소유역의 유출 특성 변화)

  • Jung, Yu-Gyeong;Lee, Ki-Hwan;Choi, Hyung-Tae;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.429-437
    • /
    • 2020
  • In this study we quantified the long-term change in discharge against precipitation in a forested watershed and investigated how the growth of forest trees influences these changes. We found a proportional relationship between precipitation and discharge for each year, and discharge decreased gradually with time. Precipitation and discharge were highest in July and August, and the changes in precipitation, discharge, and runoff rate did not always coincide, given that high runoff rate was shown in August and September. The monthly coefficient of variation (CV) for discharge was larger than that for precipitation, and the deviation between precipitation and discharge increased gradually. From 2011 to 2017, the gradient of the trend line for the change of total discharge and direct runoff against precipitation decreased, whereas the gradient of the base flow increased in this same time period. A possible explanation is that the water holding capacity of soil deposits increased as the forest soil of the Palgong Mountain watershed developed and the increase of base flow rose with groundwater level together with that of outflow quantity. The coefficient of flood recession was lower in the period 2011 to 2017 than in 2003 to 2010; thus, the reduction of discharge was mitigated and remained steady as time progressed. We conclude from these results that the discharge of surface runoff decreased as tree growth and base flow increased; however, the water yield function of the forest increased gradually.