• Title/Summary/Keyword: soil cover depth

Search Result 87, Processing Time 0.023 seconds

Actual Vegetation of Dodamsambong (Scenic Site no. 44) and Danyangseokmoon (Scenic Site no. 45) in Danyang-gun (단양군 도담삼봉과 단양석문 일대의 현존식생)

  • Choi, Byoung-Ki
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.116-123
    • /
    • 2014
  • The description of vegetation cover and floral composition was undertaken in terms of phytosociological study in Dodamsambong(scenic site no. 44) and Danyangseokmoon(no. 45). In this study a total of 17 $relev{\acute{e}}s$ containing 144 taxa were collected and analyzed. Eight plant communities are differentiated, grouped into 4 physiognomic types: forest type(Buxus microphylla var. koreana-Thuja orientalis community, Tilia mandshurica-Quercus variabilis community, and Cynanchum wilfordii-Pinus densiflora community), mantle type(Cardamine leucantha-Neillia uekii community), secondary meadow type(Galium kinuta-Spodiopogon sibiricus community, Diarthron linifolium-Zoysia japonica community), and crevice type(Patrinia rupestris-Selaginella stauntoniana community, Hypodematium glandulosopilosum community). The vegetation of Dodamsambong and Danyangseokmoon is characterized by local flora, such as calciphilous plants, geological distribution-limit species, and endemic species. The soil depth, slope, and human impact have been identified as the most important differentiating ecological factors. Buxus microphylla var. koreana-Thuja orientalis community, Tilia mandshurica-Quercus variabilis community, and Patrinia rupestris-Selaginella stauntoniana community were evaluated highly by National Vegetation Naturalness. In order to restore the value of specific landscape for scenic site, we should improve the problems of protected area such as wrong management on habitat, forest fragmentation by facilities and decline in vegetation by lack of growing the next succession.

A analysis of plant communities distribution characteristics of Boseong river wetland using ordination (서열법(ordination)을 이용한 보성강 하천 습지의 식물군락 분포 특성 분석)

  • Lee, Il Won;Kim, Kee Dae
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.354-366
    • /
    • 2022
  • To analyze the distribution of plant communities growing in river wetlands and the relationship between biotic and abiotic environmental factors, plant communities and environmental factors were investigated in river wetlands in the Boseong River. The Boseong River Wetland, the research site, consists of Hwapyeong Wetland, Bangujeong Wetland, and Seokgok Wetland. From June to September 2022, a plant community survey was conducted from the perspective of physiognomical vegetation, and the coverage of the emerging species followed the Braun-Blanquet scale. Plant species and the coverage of each species were recorded in the quadrant for plant community survey, and the cover of the quadrant, the total number of species, and the number of exotic species were measured as biological factors. As abiotic factors, altitude, orientation, inclination, soil texture, litter layer depth, dominant species diameter at breast height, and topography were recorded. In a total of 50 square plots, the most common Salix koreensis and Phragmites japonicus communities were found, and the community with the highest Shannon species diversity index was Phragmites japonicus-Echinochloa caudata community. As a result of ordination analysis by DCCA, the most significant clusters were separated according to topographic factors such as leeve, leeve slope, upper floodplain, lower floodplain, upper waterside, middle waterside, lower waterside, river island and opem water. As rare plants that need to be preserved in river wetlands, Hydrocharis dubia and Penthorum chinense were found in lower waterside, and it was found that the management of the river in the reservoir is necessary in line with the topographical distribution of ecosystem-disrupting plants, such as Paspalum distichum var. indutum.

A Study on the Leakage Protection with Polypropylene Mat in Irrigation Canal (Polypropylene Mat에 의(依)한 용수로(用水路)의 누수방지(漏水防止)에 관(關)한 연구(硏究))

  • Kang, Sin-Up;Kang, Yea-Mook;Cho, Seung-Seup
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.166-184
    • /
    • 1979
  • In order to prevent the water loss in the irrigation canal constructed on the sandy gravel layer or on the other highly permeable ground layer, lining has been practiced. Many studies have been done so far on the lining method to prevent the water loss in the irrigation canal and recently studies on the lining with plastic film or polyethylene film were also reported. However, the plastic film or polyethylene film has low strength and is liable to break, and water loss from pin hole caused by contacting with sand or gravel is highly predicted. This study was then conducted to find proper lining and buring method in canal construction of polypropylene mat after coated with vinyl, as one way to overcome the shortcoming frequently observed when plastic or usual polyehtylene film were used. Eventhough rather longer periods of experiments are needed to attain reliable and accurate results on the variation of durability, the durability of asphalt coated area, or on the damage due to freeze after burial or exposure of polypropylene mat, the experiemental results obtained during one year of period are summarized as follows: 1. The curvature at the area between canal bottom and side slope had increased stability and saved consruction cost. The relationship among the variation of curvature, the reduction of polypropylene mat and the reduced amount of soil cutting at each side slope was presented in Fig. 7 through 9. 2. The depth of covering material to protect polypropylene mat was desired to be over 30cm, considering the water depth, side slope, canal cleaning practices, traffic, or back pressure of irrigation period. 3. In order to increase the canal stability and to prevent slope erosion, sandy soil was required, to be placed under ground, and coarse gravel should cover the surface area of canal. 4. The studies on the stability of side slope in the canal should consider the passive area on the bottom and the slope should be about 1 to 2, considering the slope stability, allowable velocity and tractive force. 5. When compared with earth lining, the lining with polypropylene mat coated with vinyl was responsible to save 28% and 37% of canal lining cost, when the soil carrying distances were 500 and 700m. respectively. 6. The water interception was almost completely attained when the polypropylene mat coated with vinyl was used for lining. But further studies were assumed to be necessary for the use of asphalt since the strength of polypropylene mat connected with asphalt will vary with duration.

  • PDF

Site Characterization using Shear-Wave Velocities Inverted from Rayleigh-Wave Dispersion in Chuncheon, Korea (레일리파 분산을 역산하여 구한 횡파속도를 이용한 춘천시의 부지특성)

  • Jung, JinHoon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • To reveal and classify site characteristics in densely populated areas in Chuncheon, Korea, Rayleigh-waves were recorded at 50 sites including four sites in the forest area using four 1-Hz velocity sensors and 24 4.5-Hz vertical geophones during the period of January 2011 to May 2013. Dispersion curves of the Rayleigh waves obtained by the extended spatial autocorrelation method were inverted to derive shear-wave velocity ($v_s$) models comprising 40 horizontal layers of 1-m thickness. Depths to weathered rocks ($D_b$), shear wave velocities of these basement rocks ($v_s^b$), average velocities of the overburden layer ($\bar{v}_s^s$), and the average velocity to a depth of 30 m ($v_s30$), were then derived from those models. The estimated values of $D_b$, $v_s^b$, $\bar{v}_s^s$, and $v_s30$ for 46 sites at lower altitudes were in the ranges of 5 to 29 m, 404 to 561 m/s, 208 to 375 ms/s, and 226 to 583 m/s, respectively. According to the Korean building code for seismic design, the estimated $v_s30$ indicates that the lower altitude areas in Chuncheon are classified as $S_C$ (very dense soil and soft rock) or $S_D$ (stiff soil). To determine adequate proxies for $v_s30$, we compared the computed values with land cover, lithology, topographic slope, and surface elevation at each of the measurement sites. Due to a weak correlation (r = 0.41) between $v_s30$ and elevation, the best proxy of them, applications of this proxy to Chuncheon of a relatively small area seem to be limited.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF

A Study on the Vegetation Structure of Evergreen Broad-leaved Forest Dongbaekdongsan(Mt.) in Jeju-do, Korea (제주도 동백동산 상록활엽수림 식생구조 연구)

  • Kwak, Jeong-In;Lee, Kyong-Jae;Han, Bong-Ho;Song, Ji-Ho;Jang, Jong-Soo
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.2
    • /
    • pp.241-252
    • /
    • 2013
  • This study investigated plant community structure of Dongbaekdongsan(Mt.) in Jeju-do to identify character as evergreen broad-leaved forest. 20 plots(size is $20m{\times}20m$) were set up and plant communities were divided into 5 communities of Quercus glauca-Castanopsis cuspidata var. sievoldii-Ilex integra(Camellia japonica), Quercus glauca-Castanopsis cuspidata var. sievoldii-Camellia japonica, Quercus glauca-Camellia japonica, Quercus glauca-Camellia japonica-Pinus thunbergii and Pinus thunbergii-Quercus glauca by using TWINSPAN, DCA ordination, mean importance value and environmental condition. Area of Evergreen broad-leaved forest with stonny ground is covered with Quercus glauca and Castanopsis cuspidata var. sievoldii in canopy layer and Camellia japonica in the subordinate layer. Area of remaining soil's depth is covered with Pinus thunbergii. It has been alleged that Pinus thunbergii planted by human when Dongbaekdongsan(Mt.) is not selected local monuments. All of communities is predicted success to community of Quercus glauca-Camellia japonica. Shannon's diversity ranged from 1.0268 to 1.0717 in area of Evergreen broad-leaved forest and 1.2102 in area of Pinus thunbergii. 10 species of broad-leaved tree's constancy ratio is over the 80%. In future, Castanopsis cuspidata var. sievoldii and Cinnamomum japonicum can cover canopy layer, but it has low importance value. Specially high aged Camellia japonica is appeared everywhere. It has been alleged that it was touched by divinity since past. Dongbaekdongsan(Mt.) has different plant structure with another evergreen broad-leaved forest. It is hard that knowing its successional sere because it was damaged when it isn't degignate local monument. Accordingly continuous monitoring was required, successional direction and community's character is identified after forest become steady.

Studies on Diplosis mori Yokopama (mulberry shoot Gall midge) on mulberry tree (뽕나무 순집이 혹파리에 관한 연구)

  • 전대략;이영렬;조철호
    • Journal of Sericultural and Entomological Science
    • /
    • v.2
    • /
    • pp.49-61
    • /
    • 1962
  • The insect Diplosis mori Yokoyama is causing extensive destruction of mulberry trees in Korea with a resultant loss in silk production. This study was made to determine an effective method of control. Methods and Materials Used Preliminary studies were made to determine more exactly the life cycle of the insect. Based on this information, various control measures were tested, including the use of spray methods with BHC and control of larvae by tilling. Results Obtained 1. Life cycle studies (a) In the Suwon area, this-insect has 5 generations per year. The first starts in the later part of June and the final cycle ends in the later part of September. (b) The adult insects appear about 7: 00-8: 00 P.M. and live for 2-5 days. Females live in longer periods than the male. (c) Larvae lives inside the second and third stipules (A. B.) before mulberry leaf development. They cause extensive damage to the leaves at the point where they are attached to the stem. (d) Weather conditions considerably affect the life cycle. The pupa particularly are affected and not be able to change into the moth stage when there is a long period of no rain. (e) Larvae are large......0.3 to 2.0mm......and are milky-white immediately after hatching but turn to pinkish as the worm matures. The matured worm has a jumping ability up to 15-20cm. The worm burrows into the ground 1.5 to 3.0 cm before changing into the pupal stage. (f) The pupal stage usually lasts 7-8 days, in summer weather conditions and the pupa is surrounded with a coarse cocoon. (g) These insects, as a general rule, overwinter as pupae but sometimes as larvae. 2. Control measures (a) BHC dust applied on the ground seem most effective. It should be done 4-5 days after the worm has burrowed into the ground. For this control, it is recommended that 6kg of a 2% formation Tanbo(l0ares) be used. (b) For the effective spraying against the fly, it is recommended that a formulation of liquid BHC spray terials be used at the rate of 400-600 liters per Tanbo. (c) Tillage methods which provide a cover of soil 5cm or more in depth above infested areas will effect-maively prevent the emergence of the fly from the pupal stage. 3. Conclusions Methods of control against Diplosis mori Yokoyama can be tied more closely to the life cycle of the insect with more effective results. Further studies are needed to complete information on possible controls during or after hibernation. Economic studies on the cost of these control measures are also needed.

  • PDF