• Title/Summary/Keyword: soil contaminant

Search Result 343, Processing Time 0.018 seconds

Monte-Carlo Simulations of Non-ergodic Solute Transport from Line Sources in Isotropic Mildly Heterogeneous Aquifers (불균질 등방 대수층 내 선형오염원으로부터 기원된 비에르고딕 용질 이동에 관한 몬테카를로 시뮬레이션)

  • Seo Byong-min
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.20-31
    • /
    • 2005
  • Three dimensional Monte-Carlo simulations of non-ergodic transport of a lion-reactive solute plume by steady-state groundwater flow under a uniform mean velocity in isotropic heterogeneous aquifers were conducted. The log-normally distributed hydraulic conductivity, K(x), is modeled as a random field. Significant efforts are made to reduce tile simulation uncertainties. Ensemble averages of the second spatial moments of the plume and plume centroid variances were simulated with 1600 Monte Carlo runs for three variances of log K, ${\sigma}_Y^2=0.09,\;0.23$, and 0.46, and three dimensionless lengths of line plume sources normal to the mean velocity. The simulated second spatial moment and the plume centroid variance in longitudinal direction fit well to the first order theoretical results while the simulated transverse moments are generally larger than the first order results. The first order theoretical results significantly underestimated the simulated dimensionless transverse moments for the aquifers of large ${\sigma}_Y^2$ and large dimensionless time. The ergodic condition for the second spatial moments is far from reaching in all cases simulated, and transport In transverse directions may reach ergodic condition much slower than that in longitudinal direction. The evolution of the contaminant transported in a heterogeneous aquifer is not affected by the shape of the initial plume but affected mainly by the degree of the heterogeneity and the size of the initial plume.

The Extended Site Assessment Procedure Based on Knowledge of Biodegradability to Evaluate the Applicability of Intrinsic Remediation (자연내재복원기술(Intrinsic Remediation)적용을 위한 오염지역 평가과정 개발)

  • ;Robert M. Cowan
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.3-21
    • /
    • 1997
  • The remediation of contamiated sites using currently available remediation technologies requires long term treatment and huge costs, and it is uncertain to achieve the remediation goal to drop contamination level to either back-ground or health-based standards by using such technologies. Intrinsic remediation technology is the remediation technology that relies on the mechanisms of natural attenuation for the containment and elimination of contaminants in subsurface environments. Initial costs for the intrinsic remediation may be higher than conventional treatment technologies because the most comprehensive site assessment for intrinsic remediation is required. Total remediation cost, however may be the lowest among the presently employed technologies. The applicability of intrinsic remediation in the contaminated sites should be theroughly investigated to achieve the remedial goal of the technology. This paper provides the frame of the extended site assessment procedure based on knowledge of biodegradability to evaluate the applicability of intrinsic remediation. This site assessment procedure is composed of 5 steps such as preliminary site screening, assessment of the current knowledge of biodegradability, selecting the appropriate approach, analyzing the contaminant fate and transport and planning the monitoring schedule. In the step 1, followings are to be decided 1) whether to go on the the detailed assessment or not based on the rules of thumb concerning the biodegradability of organic compounds, 2) which protocol document is selected to follow for detailed site assessment according to the site characteristics, contaminants and the relative distance between the contamination and potential receptors. In the step 2, the database for biodegradability are searched and evaluated. In the step 3, the appropriate biodegradability pathways for the contaminated site is selected. In the step 4, the fate and transport of the contaminants at the site are analyzed through modeling. In the step 5, the monitoring schedule is planned according to the result of the modeling. Through this procedure, users may able to have the rational and systematic informations for the application of intrinsic remediation. Also the collected data and informations can be used as the basic to re-select the other remediation technology if it reaches a conclusion not to applicate intrinsic remediation technology at the site from the site assessment procedure.

  • PDF

Deterioration Characteristic Analysis for Stone Properties in the Taereung Royal Tomb of the Joseon Dynasty using Nondestructive Analysis (비파괴 분석을 활용한 조선왕릉 태릉 석조물의 손상특성 분석)

  • Lee, Myeonseong;Choie, Myoungju;Lee, Taejong;Chun, Yungun
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.222-241
    • /
    • 2020
  • The Taereung Royal Tomb from the Joseon Dynasty is the tomb of Empress Munjeong, the second queen of King Jungjong, and it contains various types of stone artifacts. All of these stone artifacts were constructed using coarse- to medium-grained biotite granite. The major types of deterioration of the stone artifacts are identified as surface weathering and biological contaminants. Exfoliation (145 sculptures), granular decomposition (138 sculptures), and repair materials (156 sculptures), along with biological contaminant algae (154 sculptures), lichen (165 sculptures) and moss (97 sculptures), have a high occurrence frequency. In particular, it is deemed that immediate conservation treatment is required, as biological deterioration (algae) represents the most serious condition (grade 3 or higher in 94% of all stones), and it is thought that exfoliation and granulation decomposition are required for long-term conservation management. As a result of equo -tip hardness and ultrasonic measurement, more than 70% of stones were found to have very weak physical properties. Through hyperspectral analysis, organisms were shown to inhabit more than 80% of the surface of burial mound stone artifacts, and P (phosphorus), S (sulfur), Cl (chlorine), and Ca (calcium) were detected in this area. This is because Taereung Royal Tomb has been exposed to the outdoors for hundreds of years and has been weathered by physical, chemical, and biological factors. Therefore, among the stone artifacts in the Taereung Royal Tomb, those with high physical weathering grades are considered to require consolidation to reinforce them physically. Since organisms are highly likely to cause stone damage, they must be removed via dry and wet cleaning. In addition, in order to delay the reoccurrence of organisms following conservation treatment, it is necessary to regularly clean up the soil that has flowed into the burial mound, and to monitor conservation conditions over the long term.