• Title/Summary/Keyword: soil contaminant

Search Result 343, Processing Time 0.026 seconds

Reductive Degradation of 4-Chlorophenol Compound by Nickel-Coated Zero Valent Iron (니켈로 코팅된 염가금속을 이용한 4-염화페놀의 환원제거율 평가)

  • Shin Seung-Chul;Kim Young-Hun;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.59-65
    • /
    • 2006
  • Reductive dechlorination of chlorophenols by nickel coated iron was investigated to understand the feasibility of using Ni/Fe for the in situ remediation of contaminated groundwater. Zero valent iron (ZVI) was amended with Ni(II) ions to form bimetal (Ni/Fe). Dechlorination of 4-chlorophenol and formation of intermediates was studied using Ni/Fe. Effects of initial contaminant concentration, bimetal loading, presence of humic acid, and solution chemistry were also evaluated. Experimental results showed that Ni/Fe bimetal was so effective that more than 95% of 4-CP degradation was achieved within 240 minutes. Pseudo first-order rate constant for the dechlorination reaction was well correlated with bimetal loading. Humic acid competed for the reactive sites on the nickel coated iron with chlorophenols, lowering the dechlorination efficiency. No significant changes in solution pH were observed in the dechlorination of chlorophenols with Ni/Fe in the absence of buffer, indicating that reactivity of bimetal (Ni/Fe) could be prolonged. Phenol was found as a dechlorination intermediate of the conversion of 4-chlorophenol compound by Ni/Fe.

Impacts of Chemical Heterogeneities in Landfill Subsurface Formations on the Transport of Leachate (매립지반의 화학적 불균질성이 침출수 이동에 미치는 영향)

  • Lee Kun-Sang
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of this study is to assess impacts of sorption heterogeneity on the transport of leachate leaked from unlined landfill sites and is accomplished by examining the results from a series of Monte-Carlo simulations. For random distribution coefficient ($K_{d}$) fields with four different levels of heterogeneity ranging from homogeneous to highly heterogeneous, the transport of leachate was investigated by linking a saturated flow model with a contaminant transport model. Impacts of a chemical heterogeneity were evaluated using point statistics values such as mean, standard deviation, and coefficient of variation of the concentration obtained at monitoring wells from 100 Monte-Carlo trials. Inspection of point statistics shows that the distribution of distribution coefficient in the landfill site proves to be an important parameter in controlling leachate concentrations. In comparison to homogeneous sorption, heterogeneous $K_{d^-}$ fields produce the variability in the leachate concentration for different realizations. The variability increases significantly as the variance in the $K_{d^-}$ field and the travel time between source and monitoring well increase. These outcomes indicate that use of a constant homogeneous $K_{d}$ value for predicting the transport of leachate can result in significant error, especially when variability in $K_{d}$ is high.

Determination of Hydraulic Parameters in Unconfined Sandy Aquifer in a Laboratory Scale (실내 자유면 사질 대수층의 수리상수 결정)

  • 김정석;김동주
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.152-157
    • /
    • 1999
  • Oil leaked from underwound storage tanks and leachate from sanitary landfills have been known as contaminant sources of the high-quality groundwater resources. The mobility of contaminants in the aquifer largely depends on the groundwater flow and the determination of associated hydraulic parameters is essential for a proper remediation of contaminated grnundwater. This study aimed at determining an optimum set of hydraulic parameters for an unconfined sandy aquifer of a laboratory scale through comparison of various methods. Results showed that the specific yield obtained from gravity drainage experiment was an average of 0.20 with minor variations in aquifer depths. and the permeabilities obtained from Dupuit approximation and slug test gave similar values of 5.33 cm/min and 5.85 cm/min but the constant head method gave 0.17 cm/min, which is much ion than the other methods. This experimental evidence reveals that the permeability of the unconfined sandy aquifer could be accurately determined by Dupuit assumption or slug tut rather than by constant head method conducted for a disturbed separate soil column.

  • PDF

Groundwater Level Responses due to Moderate·Small Magnitude Earthquakes Using 1Hz groundwater Data (1Hz 지하수 데이터를 활용한 중·소규모 지진으로 인한 지하수위 반응)

  • Gahyeon Lee;Jae Min Lee;Dongkyu Park;Dong-Hun Kim;Jaehoon Jung;Soo-Hyoung Lee
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.4
    • /
    • pp.32-43
    • /
    • 2024
  • Recently, numerous earthquakes have caused significant casualties and property damage worldwide, including major events in 2023 (Türkiye, M7.8; Morocco, M6.8) and 2024 (Noto Peninsula, Japan, M7.6; Taiwan, M7.4). In South Korea, the frequency of detectable and noticeable earthquakes has been gradually increasing since the M5.8 Gyeongju Earthquake. Notable recent events include those in Jeju (M4.9), Goesan (M4.1), the East Sea (M4.5), and Gyeongju (M4.0) since 2020. This study, for the first time in South Korea, monitored groundwater levels and temperatures at a 1Hz frequency to observe the responses in groundwater to moderate and small earthquakes primarily occurring within the country. Between April 23, 2023, and May 22, 2023, 17 earthquakes were reported in the East Sea region with magnitudes ranging from M2.0 to M4.5. Analysis of groundwater level responses at the Gangneung observation station revealed fluctuations associated with five of these events. The 1Hz observation data clearly showed groundwater level changes even for small earthquakes, indicating that groundwater is highly sensitive to the frequent small earthquakes recently occurring in South Korea. The analysis confirmed that the maximum amplitude of groundwater level changes due to earthquakes is proportional to the earthquake's magnitude and the distance from the epicenter. These findings highlight the importance of precise 1Hz-level observations in earthquake-groundwater research. This study provides foundational data for earthquake monitoring and prediction and emphasizes the need for ongoing research into monitoring the changes in groundwater parameters (such as aquifer characteristics, quantity/quality, and contaminant migration) induced by various magnitudes of earthquakes that may occur within the country in the future.

A Study on the Livestock Resources regarding on the Discharging Characteristics from Farm Land (농지 주입 시 배출특성에 대한 축분자원화물 연구)

  • Lim, Jai-Myug;Lee, Young-Sin;Han, Gee-Bong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.91-102
    • /
    • 2009
  • In this study, to estimate the transforming (runoff and leachate) rate of the organic fertilizer made of livestock resources to farm land, laboratory scale test was conducted and the results were obtained as follows: The runoff volume from farm land showed the tendency of increase according to the increase of rainfall intensity. The most rainfall leachated into the underground at the rainfall intensity of 20mm/hr, and rainfall of 5L or less leachated at the rainfall intensity of > 32.4 mm/hr. This shows that surface runoff largely depends on the rainfall intensity when soil characteristic and hardness are similar in each site. When liquid compost was fertilized, the surface runoff was similar with the results from the reactor fertilized by compost, and leachate flow was found to be lower than compost. The runoff ratio of contaminant parameters from farm land were BOD 0.00003,, $COD_{cr}$ 0.00006, TN 0.00056, TP 0.00011, TOC 0.00005, Especially, the runoff ratio of TN showed 10 folds higher than other parameters. On the other hand, the runoff ratio of SS showed higher value of 0.001, and colloid particles of soil caused this result rather than the leachate from compost fertilizer. At all ranges of rainfall intensity, fertilizer removal ratio by farm land was found to be 94.9~98.4% for compost and 85.8~98.1% for liquid compost in terms of BOD. For TN, it resulted in 96.6~98.4% for compost and 97.2~98.5% for liquid compost, and thus the most fertilizer from livestock resources were shown to be reduced through farm land application.

A Study on Remediation of Explosives-Contaminated Soil/Ground Water using Modified Fenton Reaction and Fenton-like Reaction (Modified Fenton Reaction과 Fenton-like Reaction을 이용한 화약류 오염 토양/지하수의 처리에 관한 연구)

  • Hur, Jung-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Kong, Sung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.153-160
    • /
    • 2005
  • There have been large areas of soil contaminated with high levels of explosives. For this experimental work, 2,4,6-trinitrotoluene (TNT) was tested as a representative explosive contaminant of concern in both aqueous and soil samples and its removal was evaluated using three different chemical treatment methods: 1) the classical Fenton reaction which utilizes hydrogen peroxide ($H_2O_2$) and soluble iron at pH less than 3; 2) a modified Fenton reaction which utilizes chelating agents, $H_2O_2$, and soluble iron at pH 7; and 3) a Fenton-like process which utilizes iron minerals instead of soluble iron and $H_2O_2$, generating a hydroxyl radical. Using classic Fenton reaction, 93% of TNT was removed in 20 h at pH 3 (soil spiked with 300 mg/L of TNT, 3% $H_2O_2$ and 1mM Fe(III)), whereas 21% removed at pH 7. The modified Fenton reaction, using nitrilotriacetic acid (NTA), oxalate, ethylenediaminetetraacetic acid (EDTA), acetate and citrate as representative chelating agents, was tested with 3% $H_2O_2$ at pH 7 for 24 h. Results showed the TNT removal in the order of NTA, EDTA, oxalate, citrate and acetate, with the removal efficiency of 87%, 71%, 64%, 46%, and 37%, respectively, suggesting NTA as the most effective chelating agent. The Fenton-like reaction was performed with water contaminated with 100 mg/L TNT and soil contaminated with 300 mg/L TNT, respectively, using 3% $H_2O_2$ and such iron minerals as goethite, magnetite, and hematite. In the goethite-water system, 33% of TNT was removed at pH 3 whereas 28% removed at pH 7. In the magnetite-water system, 40% of TNT was removed at pH 3 whereas 36% removed at pH 7. In the hematite-water system, 40% of TNT was removed at pH 3 whereas 34% removed at pH 7. For further experiments combining the modified Fenton reaction with the Fenton-like reaction, NTA, EDTA, and oxalate were selected with the natural iron minerals, magnetite and hematite at pH 7, based on the results from the modified Fenton reaction. As results, in case magnetite was used, 79%, 59%, and 14% of TNT was removed when NTA, oxalate, and EDTA used, respectively, whereas 73%, 25%, and 19% removed in case of hematite, when NTA, oxalate, and EDTA used, respectively.

Study on the Mechanism of Manifestation of Ecological Toxicity in Heavy Metal Contaminated Soil Using the Sensing System of Earthworm Movement (지렁이 움직임 감지 시스템을 이용한 중금속 오염 토양의 생태독성 발현 메커니즘에 대한 연구)

  • Lee, Woo-Chun;Lee, Sang-Hun;Jeon, Ji-Hun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.399-408
    • /
    • 2021
  • Natural soil was artificially contaminated with heavy metals (Cd, Pb, and Zn), and the movement of earthworm was characterized in real time using the ViSSET system composed of vibration sensor and the other components. The manifestation mechanism of ecological toxicity of heavy metals was interpreted based on the accumulative frequency of earthworm movement obtained from the real-time monitoring as well as the conventional indices of earthworm behavior, such as the change in body weight before and after tests and biocumulative concentrations of each contaminant. The results showed the difference in the earthworm movement according to the species of heavy metal contaminants. In the case of Cd, the earthworm movement was decreased with increasing its concentration and then tended to be increased. The activity of earthworm was severely increased with increasing Pb concentration, but the movement of earthworm was gradually decreased with increasing Zn concentration. The body weight of earthworm was proved to be greatly decreased in the Zn-contaminated soil, but it was similarly decreased in Cd- and Pb-contaminated soils. The bioaccumulation factor (BAF) was higher in the sequence of Cd > Zn > Pb, and particularly the biocumulative concentration of Pb did not show a clear tendency according to the Pb concentrations in soil. It was speculated that Cd is accumulated as a metallothionein-bound form in the interior of earthworm for a long time. In particular, Cd has a bad influence on the earthworm through the critical effect at its higher concentrations. Pb was likely to reveal its ecotoxicity via skin irritation or injury of sensory organs rather than ingestion pathway. The ecotoxicity of Zn seemed to be manifested by damaging the cell membranes of digestive organs or inordinately activating metabolism. Based on the results of real-time monitoring of earthworm movement, the half maximal effective concentration (EC50) of Pb was estimated to be 751.2 mg/kg, and it was similar to previously-reported ones. The study confirmed that if the conventional indices of earthworm behavior are combined with the results of newly-proposed method, the mechanism of toxicity manifestation of heavy metal contaminants in soils is more clearly interpreted.

Occurrence Characteristics of Uranium and Radon-222 in Groundwater at ○○ Village, Yongin Area (용인 ○○마을 지하수내 우라늄 및 라돈-222의 산출특성)

  • Jeong, Chan Ho;Yang, Jae Ha;Lee, Yong Cheon;Lee, Yu Jin;Cho, Hyeon Young;Kim, Moon Su;Kim, Hyun Koo;Kim, Tae Seong;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.261-276
    • /
    • 2016
  • The occurrence of natural radioactive materials such as uranium and radon-222 in groundwater was examined with hydrogeochemistry and geology at ○○ village in the Yongin area. Two rounds of 19 groundwater and 5 surface water sampling were collected for analysis. The range of pH value in groundwaters was 5.81 to 7.79 and the geochemical types of the groundwater were mostly Ca(Na)-HCO3 and Ca(Na)-NO3(Cl)-HCO3. Uranium and radon-222 concentrations in the groundwater ranged from 0.06 to 411 μg/L and from 5.56 to 903 Bq/L, respectively. Two deep groundwaters used as common potable well-water sources exceeded the maximum contaminant levels of the uranium and radon-222 proposed by the United States Environmental Protection Agency (US EPA). Three groundwater samples from residential areas contained unsuitable levels of uranium, and 12 groundwater samples were unsuitable due to radon-222 concentrations. Radioactive materials in the unsuitable groundwater are naturally occurring in a Jurassic amphibole- and biotite-bearing granitic gneiss. High uranium and radon-222 groundwater concentrations were only observed in two common wells; the others showed no relationship between bedrock geology and groundwater geochemical constituents. With such high concentrations of naturally occurring radioactive materials in groundwater, the affected areas may extend tens of meters for uranium and even farther for radon-222. Therefore, we suggest the radon-222 and the uranium did not originate from the same source. Based on the distribution of radon-222 in the study area, zones of higher radon-222 concentrations may be the result of diffusion through cracks, joint, or faults. Surface radioactivity and uranium concentrations in the groundwater show a positive relationship, and the impact areas may extend for ~200m beyond the well in the case of wells containing high concentrations of uranium. The highest uranium and thorium concentrations in rock samples were detected in thorite and monazite.

Occurrences of Uranium and Radon-222 from Groundwaters in Various Geological Environment in the Hoengseong Area (횡성지역 다양한 지질환경에서 지하수 중 우라늄 및 라돈-222 산출특성)

  • Jeong, Chan Ho;Yang, Jae Ha;Lee, Yu Jin;Lee, Yong Cheon;Choi, Hyeon Young;Kim, Moon Su;Kim, Hyun Koo;Kim, Tae Seong;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.557-576
    • /
    • 2015
  • Groundwaters in granite, gneiss, and two-mica granite formations, including faults, in the Hoengseong area are examined to determine the relationship between their uranium and radon-222 contents and rock types. The chemical compositions of 38 groundwater samples and four surface water samples collected in the study area were analyzed. Sixteen of the samples showing high uranium and radon-222 contents were repeatedly analyzed. Surface radioactivities were measured at 30 points. The uranium and radon-222 concentrations in the groundwater samples were in the ranges of 0.02-49.3 μg/L and 20-906 Bq/L, respectively. Four samples for uranium and 35 samples for radon had concentrations exceeding the alternative maximum contaminant level of the US EPA. The chemical compositions of groundwaters indicated Ca(Na)-HCO3 and Ca(Na)-NO3(HCO3+Cl) types. The pH values ranged from 5.71 to 8.66. High uranium and radon-222 contents in the groundwaters occurred mainly at the boundary between granite and gneiss, and in the granite area. The occurrence of uranium did not show any distinct relationship to that of radon-222. The radon-222, an inert gas, appeared to be dissolved in the groundwater of the aquifer after wide diffusion along rock fractures, having been derived from the decay of uranium in underground rocks. The results in this study indicate that groundwater of neutral or weakly alkaline pH, under oxidizing conditions and with a high bicarbonate content is favorable for the dissolution of uranium and uranium complexes such as uranyl or uranyl-carbonate.

Hydrogeochemical Characteristics, Occurrence, and Distribution of Natural Radioactive Materials (Uranium and Radon) in Groundwater of Gyeongnam and Gyeongbuk Provinces (경상남북도 지하수 중 자연방사성물질 우라늄과 라돈의 산출특징과 함량분포에 대한 수리지화학적 연구)

  • Cho, Byong Wook;Choo, Chang Oh;Yun, Uk;Lee, Byeong Dae;Hwang, Jae Hong;Kim, Moon Su
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.551-574
    • /
    • 2014
  • The occurrence, distribution, and hydrogeochemical characteristics of uranium and radon in groundwater within different lithologies in Gyeongnam and Gyeongbuk provinces were investigated. A total of 201 groundwater samples from sedimentary rocks taking a large portion of the geology and from igneous rocks taking a small portion of the geology were analyzed and examined using factor analysis. Their radionuclide levels were used to construct detailed concentration maps. The groundwater types, defined using a Piper diagram, are mainly Ca-$HCO_3$ with less Na-$HCO_3$. Among the samples, one site exceeds $30{\mu}g/L$ of uranium (i.e., the maximum contaminant level of the USEPA) and three sites exceed 4,000 pCi/L of radon (i.e., the alternative maximum contaminant level). No samples were found to exceed the 15 pCi/L level of gross alpha or the 5 pCi/L level of radium. The concentration of uranium ranges from 0.02 to $53.7{\mu}g/L$, with a mean of $1.56{\mu}g/L$, a median of $0.47{\mu}g/L$, and a standard deviation of $4.3{\mu}g/L$. The mean concentrations of uranium for the different geological units increase in the following order: Shindong Group, Granites, Hayang Group, Yucheon Group, and Tertiary sedimentary rocks. The concentration of radon ranges from 2 to 8,740 pCi/L, with an mean of 754 pCi/L, a median of 510 pCi/L, and a standard deviation of 907 pCi/L. The mean radon concentrations for the investigated geological units increase in the following order: Granites, Yucheon Group, Tertiary sedimentary rocks, Hayang Group and Shindong Group. According to the factor analysis for each geological unit, uranium and radon behave independently of each other with no specific correlation. However, radionuclides show close relationships with some components. Regional investigations of radionuclides throughout the country require an integrated approach that considers the main lithological units as well as administrative districts.