• 제목/요약/키워드: soil conditions

검색결과 4,113건 처리시간 0.026초

Region-Scaled Soil Erosion Assessment using USLE and WEPP in Korea

  • Kim, Min-Kyeong;Jung, Kang-Ho;Yun, Sun-Gang;Kim, Chul-Soo
    • 한국환경농학회지
    • /
    • 제27권4호
    • /
    • pp.314-320
    • /
    • 2008
  • During the summer season, more than half of the annual precipitation in Korea occurs during the summer season due to the geographical location in the Asian monsoon belt. So, this causes severe soil erosion from croplands, which is directly linked to the deterioration of crop/land productivity and surface water quality. Therefore, much attention has been given to develop accurate estimation tools of soil erosion. The aim of this study is to assess the performance of using the empirical Universal Soil Loss Equation (USLE) and the physical-based model of the Water Erosion Prediction Project (WEPP) to quantify eroded amount of soil from agricultural fields. Input data files, including climate, soil, slope, and cropping management, were modified to fit into Korean conditions. Chuncheon (forest) and Jeonju (level-plain) were selected as two Korean cities with different topographic characteristics for model analysis. The results of this current study indicated that better soil erosion prediction can be achieved using the WEPP model since it has better power to illustrate a higher degree of spatial variability than USLE in topography, precipitation, soils, and crop management practices. These present findings are expected to contribute to the development of the environmental assessment program as well as the conservation of the agricultural environment in Korea.

농업차륜(農業車輪)의 성능평가(性能評價)를 위한 인공토조(人工土槽)시스템의 제작(製作) 및 자료수집(資料蒐集) 시스템의 구성(構成) (Construction of the Soil Bin System and Associated Micro computer-Based Data Acquisition System for the Evaluation of Wheel Performance)

  • 이규승;정창주;이용국;박승제
    • Journal of Biosystems Engineering
    • /
    • 제13권2호
    • /
    • pp.28-37
    • /
    • 1988
  • This study was conducted to construct the soil bin system and associated microcomputer-based data acquisition system which is to be used for the effective evaluation of wheel performance. The soil bin system consists of four main parts; soil bin, carriage drive system, test carriage and soil processing carriage. The test carriage was constructed to measure the five performance parameters of testing wheels; pulling forte, motion resistance, sinkage and rotational speed of test wheel, and speed of test carriage. The test wheel is powered by a hydraulic system up to 8 ps. Soil processing carriage was designed to provide uniform test soil condition across the toil bin, and reproduction of soil conditions found satisfiable. The data acquisition system consists of APPLE II PLUS microcomputer, strain amplifier, I/O interface, A/D converter, digital counter and various transducers. It takes about 0.86 seconds to measure a set of performance parameters and store on the floppy disk simultaneously. Series of experiment showed that this system can be used effectively for evaluating the wheel performance associated with soil.

  • PDF

수정 IAS 지수를 이용한 북한지역의 강우침식인자 추정 (Estimation of Rainfall Erosivity in North Korea using Modified Institute of Agricultural Sciences)

  • 이준학;허준행
    • 한국토양비료학회지
    • /
    • 제44권6호
    • /
    • pp.1004-1009
    • /
    • 2011
  • Soil erosion in North Korea has been continued to accelerate by deterioration of topographical conditions. However, few studies have been conducted to predict the amount of soil loss in North Korea due to limited data so far. Rainfall erosivity is an important factor to predict the amount of long-term annual soil loss by USLE (universal soil loss equation). The purpose of this study is to investigate rainfall erosivity, which presented the potential risk of soil erosion by water, in North Korea. Annual rainfall erosivities for 27 stations in North Korea for 1983~2010 were calculated using regression models based on modified Institute of Agricultural Sciences (IAS) index in this study. The result showed that annual average rainfall erosivity in North Korea ranged from 2,249 to 7,526 and averaged value was $4,947MJmm\;ha^{-1}\;hr^{-1}\;yr^{-1}$, which corresponded to about 70% of annual average rainfall erosivity in South Korea. The finding was that the potential risk of soil erosion in North Korea has been accelerated by the increase of rainfall erosivity since the late 1990s.

DEVELOPMENT OF A WEB-BASED GEO-SPATIAL INFORMATION SYSTEM FOR THE ANALYSIS AND EVALUATION OF SOIL DATA

  • YongGu Jang;SangHoon Lee;HoYun Kang;InJoon Kang
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.1396-1403
    • /
    • 2009
  • The Ministry of Construction and Transportation (MOCT) has been constructing a nationwide soil information DB since 2000, as basic data for the construction of 'underground geographical information,' a project under the 2nd National Geo-spatial Information System (NGIS) master plan. The inputted soil information includes not only underground conditions such as the layer depth, type, color, and groundwater level, but also engineering information that can be applied to construction work design, such as on the standard penetration test and the compression test. It is difficult to use this information in soil analysis and design, however, because only the test results are currently available. A web-based geo-spatial information system was developed in this study to facilitate the effective application of the soil information database (DB). First, the space information, layer information, and engineering test information were loaded from the soil information DB in real time, and the earth volume, bearing capacity, and settlement were calculated to develop a web client that will evaluate the ground softness and liquefaction. It seems that the soil information DB can be actively applied to the planning and design of construction works using this system.

  • PDF

표토의 정밀 모니터링을 위한 유실 및 퇴적량 산정 (Loss and Sediment Estimation for the Precise Monitoring of Surface Soil)

  • 강영미;강준묵
    • 대한토목학회논문집
    • /
    • 제26권1D호
    • /
    • pp.141-147
    • /
    • 2006
  • 강우에 의해서 발생하는 토양유실은 비옥한 표토를 유실시켜 생산성의 저하를 초래하고, 유실된 토양입자는 하천이나 호수, 댐 등에 퇴적되어 저수용량의 감소와 수질관리에 어려움을 야기 시키므로 이에 대한 대처가 필요하다. 본 연구에서는 위성 영상과 GIS 기법을 활용하여 유역내 토양침식에 영향을 미치는 토양조건, 피복조건, 지형조건들을 추출하고 이 요소들을 범용토양유실공식(USLE; Universal Soil Loss Equation)에 적용하여 유입퇴적량 및 유입 가능성이 높은 위치를 파악하였다. 또한 유입되어 하상에 쌓여 있는 퇴적량은 투과성이 강한 음향측심기를 활용하여 퇴적층과 지층의 고도 정보를 획득하여 산정하고 유실량과 퇴적량을 비교하여 퇴적되는 비율을 도출하였다.

Threshold Subsoil Bulk Density for Optimal Soil Physical Quality in Upland: Inferred Through Parameter Interactions and Crop Growth Inhibition

  • Cho, Hee-Rae;Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Sonn, Yeon-Kyu;Kim, Myeong-Sook;Choi, Seyeong
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.548-554
    • /
    • 2016
  • Optimal range of soil physical quality to enhance crop productivity or to improve environmental health is still in dispute for the upland soil. We hypothesized that the optimal range might be established by comparing soil physical parameters and their interactions inhibiting crop growth. The parameter identifying optimal range covered favorable conditions of aeration, permeability and root extension. To establish soil physical standard two experiments were conducted as follows; 1) investigating interactions of bulk density and aeration porosity in the laboratory test and 2) determining effects of soil compaction and deep & conventional tillage on physical properties and crop growth in the field test. The crops were Perilla frutescens, Zea mays L., Solanum tuberosum L. and Secale cereael. The saturated hydraulic conductivity, bulk density from the root depth, root growth and stem length were obtained. Higher bulk density showed lower aeration porosity and hydraulic conductivity, and finer texture had lower threshold bulk density at 10% aeration bulk density. Reduced crop growth by subsoil compaction was higher in silt clay loam compared to other textures. Loam soil had better physical improvement in deep rotary tillage plot. Combined with results of the present studies, the soil physical quality was possibly assessed by bulk density index. Threshold subsoil bulk density as the upper value were $1.55Mg\;m^{-3}$ in sandy loam, $1.50Mg\;m^{-3}$ in loam and $1.45Mg\;m^{-3}$ in silty clay loam for optimal soil physical quality in upland.

Numerical Study of Unsaturated Infinite Slope Stability regarding Suction Stress under Rainfall-induced Infiltration Conditions

  • Song, Young-Suk;Hwang, Woong-Ki
    • 지질공학
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2014
  • Numerical stability analysis of an unsaturated infinite slope under rainfall-induced infiltration conditions was performed using generalized effective stress to unify both saturated and unsaturated conditions The soil-water characteristic curve (SWCC) of sand with a relative density of 75% was initially measured for both drying and wetting processes. The hydraulic conductivity function (HCF) and suction stress characteristic curve (SSCC) were subsequently estimated. Under the rainfall-induced infiltration conditions, transient seepage analysis of an unsaturated infinite slope was performed using the finite element analysis program, SEEP/W. Based on these results, the stability of an unsaturated infinite slope under rainfall-induced infiltration conditions was examined in relation to suction stress. According to the results, the negative pore-water pressure and water content within the slope soil changed over time due to the infiltration. In addition, the variation of the negative pore-water pressure and water content led to a variation in suction stress and a subsequent change in the slope's factor of safety during the rainfall period.

Persistence of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes in Soil, Liquid Manure Amended Soil, and Liquid Manure

  • Jung, Kyu-Seok;Kim, Min-Ha;Heu, Sung-Gi;Roh, Eun-Jung;Lee, Dong-Hwan;Lim, Jeong-A;Ryu, Jae-Gee;Kim, Kye-Hoon
    • 한국토양비료학회지
    • /
    • 제47권6호
    • /
    • pp.432-436
    • /
    • 2014
  • While searching for healthier diets, people became more attentive to agricultural organic products. However, organic foods may be more susceptible to microbiological contamination because of the use of livestock manure compost and liquid manure, potential sources of pathogenic bacteria. This study was undertaken to investigate the persistence of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes in soil, liquid manure amended soil, and liquid manure. Loamy soil, liquid manure amended soil, and liquid manure were inoculated with S. enterica, E. coli O157:H7, and L. monocytogenes. Samples were incubated in consistent moisture content at $25^{\circ}C$. Samples had been periodically collected during 120 days depending on the given conditions. S. enterica and E. coli O157:H7 survived over 120 days in loamy soil and over 60 days in liquid manure amended soil, respectively. L. monocytogenes decreased faster than other pathogens in soil. S. enterica, E. coli O157:H7, and L. monocytogenes survived for up to 5 days in liquid manure. S. enterica and E. coli O157:H7 in soil decreased by 2 to $2.5log\;CFU\;g^{-1}$ for 120 days. S. enterica and E. coli O157:H7 in liquid manure amended soil decreased slowly for 21 days. However, S. enterica, E. coli O157:H7, and L. monocytogenes sharply decreased after 21 days. S. enterica, E. coli O157:H7, and L. monocytogenes in soil increased by 0.5 to $1.0log\;CFU\;g^{-1}$ for 7 days. Foodborne pathogens in soil and liquid manure amended soil gradually decreased over time.

환경차이에 따른 밭토양 중 살균제 Myclobutanil의 잔류 및 토양미생물상 변화 (Residue of Fungicide Myclobutanil and Change of Soil Microflora in Upland Soil at Different Evironmental Conditions)

  • 한성수;최찬규;정재훈;백승화
    • 한국환경농학회지
    • /
    • 제14권1호
    • /
    • pp.28-44
    • /
    • 1995
  • 밭토양중 myclobutanil의 분해성과 이 농약이 토양미생물상에 미치는 영향을 검토하기 위하여 살균 ${\cdot}$ 비살균토양과 수분함량, 토양 pH, 토양 온도, 약제처리농도, 토양종류 및 실내 ${\cdot}$ 포장토양등의 조건에 따라 myclobutanil을 처리한후 경시적으로 토양을 채취하여 농약잔류량과 토양미생물수를 조사하였는바 그 결과는 다음과 같다. 회귀식에서 구한 분해반감기로 본 myclobutanil의 분해속도는 살균토양에서보다 비살균토양에서, 실내실험에서보다 포장실험에서, 20ppm처리보다 10ppm처리에서, 그리고 미사질양토에서보다 식양토에서 각각 3.9배, 1.6배, 1.4배 그리고 1.2배 정도 빨랐다. 토양 pH의 차이에 따른 myclobutanil의 분해속도는 pH 9에서 가장 빨랐고 pH 5.5에서 가장 느렸으며, 토양온도의 차이에 따른 myclobutanil의 분해속도는 $27^{\circ}C$ > $37^{\circ}C$ > $17^{\circ}C$ 의 순으로 빨랐고, 토양수분함량별 실험에서 myclobutanil의 분해속도는 차이가 없었다. 살균토양에서의 미생물수는 매우 적었으나 비살균토양에서는 많이 발생되었다. 수분함량, pH, 온도, 처리농도 및 토성의 차이에 따른 myclobutanil의 처리구와 무처리구간의 미생물수를 T-검정한 결과 차이가 나지않았다. 포장실험토양에서 사상균 및 총균수는 myclobutanil 처리구가 무처리구보다 많았으나 실내실험토양에서는 차이가 나지 않았다. Myclobutanil 무처리구내에 있어서 pH, 처리농도, 토성 및 실내.포장조건의 차이에 따른 미생물수는 차이가 나지 않았으나, 포장용수량의 60% 수분함량에서는 40% 수분함량에서 보다 세균이 그리고 토양온도 $17^{\circ}C$에서는 $37^{\circ}C$에서보다 사상균이 각각 많이 발생되었다. Myclobutanil 처리구내에 있어서 pH 및 포장.실내조건의 차이에 따른 미생물수는 차이가 없었으나, 세균과 총균수가 포장용수량의 80%수분함량에서는 40%와 60%수분함량에서보다 많았으며, 방선균의 수는 $17^{\circ}C$에서보다 $27^{\circ}C$에서 그리고 미사질양토에서보다 식양토에서 각각 많았다.

  • PDF

불포화토 칼럼시험을 통한 연속강우와 반복강우의 강우침투속도 분석 (Analysis of Rainfall Infiltration Velocity in Unsaturated Soils Under Both Continuous and Repeated Rainfall Conditions by an Unsaturated Soil Column Test)

  • 박규보;채병곤;박혁진
    • 지질공학
    • /
    • 제21권2호
    • /
    • pp.133-145
    • /
    • 2011
  • 본 연구는 불포화 풍화토별 강우지속시간 및 비강우시간에 따른 강우침투속도 관계를 파악하기 위하여 국내에서 산사태 발생빈도가 높은 선캠브리아기 편마암 풍화토와 백악기 화강암 풍화토를 대상으로 불포화 풍화토 칼럼시험을 하였다. 본 연구에서는 일정시간 간격으로 체적함수비를 측정하기 위하여 함수비 측정 TDR센서를 이용하였다. 강우강도 조건은 20 mm/h로 선정하여 연속강우와 반복강우를 재현하였으며, 반복강우의 경우 강우시간과 비강우시간을 조절하였다. 그리고 흙의 단위중량 조건은 편마암 풍화토의 경우 현장 건조단위중량보다 낮고 칼럼상부유출이 일어나지 않는 1.35 $g/cm^3$, 화강암 풍화토의 경우 현장 건조단위중량인 1.21 $g/cm^3$로 선정하였다. 편마암 풍화토와 화강암 풍화토 총 강우량 200 mm인 조건에서 $2.090{\times}10^{-3}{\sim}2.854{\times}10^{-3}$ cm/s와 $1.692{\times}10^{-3}{\sim}2.012{\times}10^{-3}$ cm/s로 총 강우량 100 mm에서의 $1.309{\times}10^{-3}{\sim}1.871{\times}10^{-3}$ cm/s와 $1.175{\times}10^{-3}{\sim}1.581{\times}10^{-3}$ cm/s보다 강우침투속도가 빠르게 나타났다. 이는 동일 시간당 토층 내 주입되는 물의 양이 200 mm조건에서 100 mm조건보다 많기 때문이다. 완전 건조 상태의 강우침투속도와 강우가 반복되어 물을 함유하고 있는 상태의 강우 재침투속도를 비교해 보면, 편마암 풍화토와 화강암 풍화토의 최초 강우침투속도인 $1.309{\times}10^{-3}{\sim}2.854{\times}10^{-3}$ cm/s와 $1.175{\times}10^{-3}{\sim}2.012{\times}10^{-3}$ cm/s보다 강우 재침투속도가 $1.307{\times}10^{-2}{\sim}1.718{\times}10^{-2}$ cm/s와 $1.789{\times}10^{-2}{\sim}2.070{\times}10^{-2}$ cm/s로 높게 나타났다. 이는 토층 내 공기의 함입량이 줄어들어서 불포화 투수계수에 영향을 미치는 흡입력(matric suction)이 감소한 것이 원인으로 생각된다.