• Title/Summary/Keyword: soil conditions

Search Result 4,113, Processing Time 0.03 seconds

Three phase flow simulations using the fractional flow based approach with general initial and boundary conditions

  • Suk, Heejun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.88-91
    • /
    • 2004
  • The multiphase flow simulator, MPS, is developed based on the fractional flow approach considering tile fully three phase flow with general initial and boundary condition. Most existing fractional flow-based models are limited to two-phase flow and specific boundary conditions. Although there appears a number of three-phase flow models, they were mostly developed using pressure based approaches. As a result, these models require cumbersome variable-switch techniques to deal with phase appearance and disappearance. The use of fractional flow based approach in MPS makes it unnecessary to use variable-switch to handle the change of phase configurations. Also most existing fractional flow based models consider only specific boundary conditions. However, the present model considers general boundary conditions of most possible and plausible cases which consists of ten cases.

  • PDF

Effects of Experimental Drought on Soil Bacterial Community in a Larix Kaempferi Stand

  • Kim, Beomjeong;Choi, Byoungkoo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.3
    • /
    • pp.258-261
    • /
    • 2018
  • Drought alters soil microorganisms; however, it is still not clear how soil microbes respond to severe drought conditions. In this study, the responses of soil bacterial community to experimental drought in a coniferous stand were examined. Six $6m{\times}6m$ plots with three replicates of control and drought treatments were delimited. PCR amplification and Illumina sequencing were conducted for cluster analysis of soil bacterial community and species richness and species diversity was analyzed. Along the 393 days of simulated drought from July 2016 to October 2017, soil bacterial species diversity slightly increased whereas species richness decreased in both control and roof plots. Moreover, soil bacterial species richness more decreased in roof plots than in controls. Combining these results, soil bacterial activity might have been altered by simulated drought.

Effect of Different Soil pH on the Root Growth of Temperate Grass Species (토양산도의 차이가 주요화본과목초의 뿌리생육에 미치는 영향)

  • 이혁호;박근제;이종열
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 1987
  • A pot experiment conducted to investigate the root elongation and weight of grasses, i.e. Orchardgrass, tall fescue and perennial ryegrass under the conditions adjusted pH of half vertical part of pot soil to seven levels from 2 to 8. 1. Root growth was drastically decreased as soil pH was lowed. 2. Higer the soil pH, longer the root length. Increase of soil pH to 6 increased the root length of orchardgrass, perennial ryegrass and tall fescue. 3. Regardless of grass species, most of roots distributed to the soil which adjusted pH from 6 to 7. 4. Dry weight of root was increased to pH 7 of soil in orchardgrass and perennial ryegrass and was 55 to 78% of production of pH 6 compared with soil pH 7. In case of tall fescue, dry root weight in the soil pH 7 was 69.8% of root weight growed in soil pH 6.

  • PDF

Experimental Study on Reinforcement Effectives of Soil Shear Strength by Bamboo(Substitute Materials Simulating a Root System) -Analysis caused by Simple Shear Test under Soil Suction Control- (대나무(대체근계)의 토질강도보강효과에 대한 실험적 연구 -토양수분제어하의 단순전단시험에 의한 해석-)

  • Lee, Chang-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.2
    • /
    • pp.46-51
    • /
    • 2004
  • In this paper, reinforcement of soil shear strength by bamboo(substitute materials simulating a root system) are evaluated by soil strength parameters(apparent cohesion(c) and internal friction angle(tan${\Phi}$)), using simple shear tester which clearly depicts shear deformation and controls soil suction. The results show that the internal friction angle does not change under various soil suction conditions but the apparent cohesion, which reach a peak in suction of 45cm$H_2O$ near critical capillary head, is effected by soil suction. And the reinforcement of soil strength by bamboo are expressed by apparent cohesion more than internal friction angle. In addition the increment of apparent cohesion by bamboo reached a peak in suction 45cm$H_2O$ too.

The Measurement of Soil Conditioning Effects of Organic Materials (유기물의 토양 개량 효과 측정)

  • 주영규
    • Asian Journal of Turfgrass Science
    • /
    • v.7 no.1
    • /
    • pp.13-18
    • /
    • 1993
  • Much attention has been given recently to solve the environmental contamination in golf courses Changing to culture practice rather than chemical practice that depends on pesticides and fertilizers is a hot issue in golf courses or grasslands. Organic soil conditioners improve soil-plant envirormental conditions rich in physical properties. In this study, measuring systems to evaluate soil conditioning effects were set up for on-site purpose. After establishing the methodology for evaluating soil conditioner effects, 2 kinds of organic conditioners were rested for examination. The systems for the methodology included a set of simulating equipment for field capacity, an impact type soil column compactor, and an infiltration-percolation system. Test results using the systems showed bulk density and infiltration rate of mixed soil were decreased at highter rates of conditioner, but total porocities were increased. Increased porocities were most capillary pore space which has a positive effect on soil water potential. The systems and methodology in this study seem to have an efficiency to measure the effects of soil conditioner on site purpose.

  • PDF

A Study on the Observation of Soil Moisture Conditions and its Applied Possibility in Agriculture Using Land Surface Temperature and NDVI from Landsat-8 OLI/TIRS Satellite Image (Landsat-8 OLI/TIRS 위성영상의 지표온도와 식생지수를 이용한 토양의 수분 상태 관측 및 농업분야에의 응용 가능성 연구)

  • Chae, Sung-Ho;Park, Sung-Hwan;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.931-946
    • /
    • 2017
  • The purpose of this study is to observe and analyze soil moisture conditions with high resolution and to evaluate its application feasibility to agriculture. For this purpose, we used three Landsat-8 OLI (Operational Land Imager)/TIRS (Thermal Infrared Sensor) optical and thermal infrared satellite images taken from May to June 2015, 2016, and 2017, including the rural areas of Jeollabuk-do, where 46% of agricultural areas are located. The soil moisture conditions at each date in the study area can be effectively obtained through the SPI (Standardized Precipitation Index)3 drought index, and each image has near normal, moderately wet, and moderately dry soil moisture conditions. The temperature vegetation dryness index (TVDI) was calculated to observe the soil moisture status from the Landsat-8 OLI/TIRS images with different soil moisture conditions and to compare and analyze the soil moisture conditions obtained from the SPI3 drought index. TVDI is estimated from the relationship between LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index) calculated from Landsat-8 OLI/TIRS satellite images. The maximum/minimum values of LST according to NDVI are extracted from the distribution of pixels in the feature space of LST-NDVI, and the Dry/Wet edges of LST according to NDVI can be determined by linear regression analysis. The TVDI value is obtained by calculating the ratio of the LST value between the two edges. We classified the relative soil moisture conditions from the TVDI values into five stages: very wet, wet, normal, dry, and very dry and compared to the soil moisture conditions obtained from SPI3. Due to the rice-planing season from May to June, 62% of the whole images were classified as wet and very wet due to paddy field areas which are the largest proportions in the image. Also, the pixels classified as normal were analyzed because of the influence of the field area in the image. The TVDI classification results for the whole image roughly corresponded to the SPI3 soil moisture condition, but they did not correspond to the subdivision results which are very dry, wet, and very wet. In addition, after extracting and classifying agricultural areas of paddy field and field, the paddy field area did not correspond to the SPI3 drought index in the very dry, normal and very wet classification results, and the field area did not correspond to the SPI3 drought index in the normal classification. This is considered to be a problem in Dry/Wet edge estimation due to outlier such as extremely dry bare soil and very wet paddy field area, water, cloud and mountain topography effects (shadow). However, in the agricultural area, especially the field area, in May to June, it was possible to effectively observe the soil moisture conditions as a subdivision. It is expected that the application of this method will be possible by observing the temporal and spatial changes of the soil moisture status in the agricultural area using the optical satellite with high spatial resolution and forecasting the agricultural production.

Research on the Germination and Growth of Ginseng Seeds According to ICT-Based Soil (ICT 기반의 인삼 공정 육묘 시 상토에 따른 발아 특성)

  • Kim, D.H.;Kim, Y.B.;Koo, H.J.;Baek, H.J.;Lee, S.B.;Hong, E.K.;Kim, S.K.;Chang, K.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.2
    • /
    • pp.51-61
    • /
    • 2021
  • As a result of examining the germination rate between ginseng varieties, Jagyongjong varieties had the highest germination rate, and Yeonpung. had the lowest germination rate. In the ginseng seed germination rate experiment, the highest germination rate and growth condition were shown in artificial soil conditions of the ratio of Peatmoss 6.5: Pearlite 2: Masato 1.5. Good soil conditions require adequate soil moisture forces during the incubation period. The cultivation of ginseng medicinal crops requires optimal soil breathability, soil pH, and soil stabilization, which are important for root breathing. Microbial activity in the soil has a great influence on the growth of ginseng. The optimum pH of the soil for ginseng cultivation is 5.0-5.5 As a result of the experiment, the soil remained in an appropriate range after a month. In general, when the EC concentration value of the soil for ginseng cultivation is 0.2 mS/cm or more, growth deteriorates, and when the EC concentration value is 0.5 mS/cm or more, concentration obstacles such as root decay occur. As a result of the analysis, the higher the concentration value of EC, the more likely it is to interfere with ginseng growth.

Varietal Difference in Growth Response and Ginsenoside Contents of Two-Year-Old Ginseng Grown in Paddy Field with Different Drainage Conditions (배수등급이 다른 논토양에서 2년생 인삼의 품종별 생육 및 진세노사이드함량 차이)

  • Lee, Sung-Woo;Kim, Chung-Guk;Yeon, Byeong-Yeol;Hyun, Dong-Yun;Shin, Yu-Su;Kang, Seung-Won;Cha, Seon-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.4
    • /
    • pp.401-406
    • /
    • 2008
  • To select adoptable varieties in paddy soil with relatively high content of soil moisture, the growth characteristics and ginsenoside content of two-year-old ginseng was investigated in paddy soil with two types of drainage conditions such as poorly and imperfectly drained class, using 4 varieties, Cheonpoong (CP), Yeonpoong (YP), Hwangsookjong (HS) Jakyeongjong (JK). The ratio of survived plant in poor drainage conditions was higher than that in imperfect drainage conditions, and the ratio of discolored leaf in the former was lower than that in the latter. The ratio of survived plant was highest in HS, while lowest in YP. The ratio of discolored leaf was lowest in HS, while highest in YP among 4 varieties. Root weight per plant and yield were more distinctly decreased in poor drainage conditions than those in imperfect drainage conditions. Descending order of yield in poor drainage conditions was JK, CP, YP and HS, while CP, YP, JK and HS in imperfect drainage conditions. Varietal difference of rusty colored root was more distinct than that between poor and imperfect drainage conditions. The ratio of rusty colored root was relatively low in CP and JK, while high in YP and HS. Total ginsenoside content of two-year-old ginseng grown in poor drainage conditions was increased more than that in imperfect drainage conditions due to full growth of root. Regardless of different drainage conditions total ginsenoside content was highest in YP, while lowest in HS among 4 varieties, and there were no distinct difference between CP and JK.

Computer Tomography as a Tool for Physical Analysis in an Anthropogenic Soil

  • Chun, Hyen Chung;Park, Chan Won;Sonn, Yeon Kyu;Cho, Hyun Joon;Hyun, Byung Keun;Song, Kwan Cheol;Zhang, Yong Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.549-555
    • /
    • 2013
  • Human influence on soil formation has dramatically increased as the development of human civilization and industry. Increase of anthropogenic soils induced research of those soils; classification, chemical and physical characteristics and plant growth of anthropogenic soils. However there have been no reports on soil pore properties from the anthropogenic soils so far. Therefore the objectives of this study were to test computer tomography (CT) to characterize physical properties of an anthropogenic paddy field soil and to find differences between natural and anthropogenic paddy field soils. Soil samples of a natural paddy field were taken from Ansung, Gyeonggi-do (Ansung site), and samples of an anthropogenic paddy field were from Gumi in Gyeongsangnam-do (Gasan) where paddy fields were remodeled in 2011-2012. Samples were taken at three different depths and analyzed for routine physical properties and CT scans. CT scan provided 3 dimensional images to calculate pore size, length and tortuosity of soil pores. Fractal analysis was applied to quantify pore structure within soil images. The results of measured physical properties (bulk density, porosity) did not show differences across depths and sites, but hardness and water content had differences. These differences repeated within the results of pore morphology. Top soil samples from both sites had greater pore numbers and sizes than others. Fractal analyses showed that top soils had more heterogeneous pore structures than others. The bottom layer of the Gasan site showed more degradation of pore properties than ploughpan and bottom layers from the Ansung site. These results concluded that anthropogenic soils may have more degraded pore properties as depth increases. The remodeled paddy fields may need more fundamental remediation to improve physical conditions. This study suggests that pore analyses using CT can provide important information of physical conditions from anthropogenic soils.

Effect of Rice Straw Compost on Cadmium Transfer and Metal-ions Distribution at Different Growth Stages of Soybean

  • Jung, Ha-il;Chae, Mi-Jin;Kong, Myung-Suk;Kang, Seong-Soo;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.644-650
    • /
    • 2016
  • In soil-to-plant transfer of heavy metals, the amount absorbed and accumulated varies depending on the environment conditions. The absorption rate of cadmium (Cd) in plants differs considerably depending on the bioavailability of Cd in the soil, while usage by various organic matters is also reported to affect absorption patterns. Therefore, this study aimed to identify the difference in the transfer of essential metal ions and Cd to various plant parts when rice straw compost was used to cultivate soybean (Glycine max L. cv. Daepung). In the two-leaf stage of soybean cultivated in a greenhouse, Cd was mixed in the soil, after which the Cd and essential metal ions contents, and physiological changes of soybean seedlings were studied on the 15th and 25th day. The Cd toxicity in the plant was reduced with the use of rice straw compost. Further, the Cd content varied with the plant part, and was higher in young leaves (3rd and 4th leaf) than in the stem. When analyzed by leaf age, the Cd transfer was highest in young leaves (3rd and 4th leaf), followed by mature leaves (1st and 2nd leaf). While there was no significant difference between plant tissues in the absorption rate of copper (Cu) and zinc (Zn) when rice straw compost was used against Cd toxicity, the absorption rate of manganese (Mn) and iron (Fe) showed a significant decline in both the control and rice straw compost treatment conditions, as well as a significant difference between leaf ages. Therefore, these results confirm that the use of rice straw compost against Cd toxicity is effective, and implies that the rate of Cd transfer in the soybean plant varies significantly with leaf age.