• Title/Summary/Keyword: soil and water pressure

Search Result 647, Processing Time 0.03 seconds

Soil Water Diffusivity and Soil Water Stress Coefficient Studies Using Weighting Lysimeter Data (토양수분확산계수 측정과 자동측정리이시메타를 이용한 토양수분계수 추정)

  • Oh, Dong-Shig;Ayars, James E.;Soppe, Richard;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.344-356
    • /
    • 1999
  • A new and relatively simple equation for the soil water content-pressure head curve, ${\theta}$(h) is described in this paper. The particular form of the equation enables one to derive closed-form analytical expressions for the relative hydraulic conductivity, Kr, when substituted in the predictive conductivity models of Y. Mualem. Hopmans' equation is presented as an experimental method. The experienced method, $ET_a=K_sK_cET_o$ is introduced to estimate the actual evapotranspiration, $ET_a$(or $ET_c$). Using $ET_c$ and coil water data measured automatically in a weighing lusimeter, $K_s$ and $K_c$ values are estimated. Recently, FAO has introduced calculation procedures for the soil water(stress) coefficient, Ks in "Guidelines for computing crop water requirements".

  • PDF

The Analysis of Single Piles in Weathered Soil with and without Ground Water Table under the Dynamic Condition (지진 시 풍화지반(건조/포화)에 근입된 단말뚝의 동적거동 분석)

  • Song, Su-Min;Park, Jong-Jeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.1
    • /
    • pp.17-33
    • /
    • 2022
  • This study describes the effect of ground water table on the dynamic analysis of single piles subjected to earthquake loading. The dynamic numerical analysis was performed for different dry and saturated soils with varying the relative densities of surrounding weathered soils (SM). The test soil was a weathered soil encountered in the engineering field and bender element tests were conducted to estimate the dynamic properties of test soil. The Mohr-Coulomb model and Finn model were used for soil, dry and saturated conditions, respectively. These models validated with results of centrifuge tests. When compared with the results from the soil conditions, saturated cases showed more lateral displacement and bending moment of piles than dry cases, and this difference caused from the generation of excess porewater pressure. It means that the kinematic effect of the soil decreased as the excess pore water pressure was generated, and it was changed to the inertial behavior of the pile.

The Influence of Overburden Pressure and Volume Change on the Soil-water Characteristic Curve of Unsaturated Weathered Granite Soil (상재하중과 체적변형을 고려한 불포화화강풍화토의 함수특성곡선)

  • Lee, Younghuy;Kim, Taehan;Moon, Seokjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.53-60
    • /
    • 2010
  • The comprehensive tests on unsaturated weathered granite soils are carried out to obtain the soil-water characteristic curve that is the one of the essential requisites to study the unsaturated soil. The weathered granite soils were obtained at Palgong mountain in Daegu. The existing test results have been carried out without overburden pressures and volume changes. In this study, the volumetric pressure plate extractor is improved to consider two factors such as overburden pressure and volume change. The applied overburden pressures were 0, 25, 50, 75, 100kPa and volume changes were measured at each phase. he results of this study are summarized as follows: As the overburden pressure increases, the volumetric water content decreases at the same matric suction and the air entry value increases and gradient of curve at the transition zone and the size of the hysteresis loops decreases. As the overburden pressure increases, the degree of saturation increases at the same matric suction and degree of saturation of the wetting curve is higher than that of dry curve. The SWCC with volume changes are slightly larger than those without volume changes. The general equation proposed by Fredlund & Xing(1994) to fit the experimental result of the SWCC indicates good agreement. The empirical parameters a, n, m as overburden pressure show similar inclination as the existing results.

An Experimental Study on the Effect of Consolidation Improvement Using Horizontal Drains (수평배수재를 이용한 압밀개량효과에 대한 실험연구)

  • 김지용;김정기;장연수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.33-40
    • /
    • 2000
  • The horizontal drain method is one of the soil improvement methods in reclamation works using dredged soils. In this method, plastic drain boards are installed horizontally in the ground, and a seepage pressure or negative pressure is applied through one end of these drains. In this study, a basic consolidation test using horizontal drains was conducted to investigate the effectiveness of this method. The configuration of soil box which was used in this test is 100cm(B)${\times}$100cm(L)${\times}$85cm(H). The drain board was reduced to 25mm${\times}$5mm. The variations in settlement and volume of drain water during the consolidation process were measured, and the distribution of water content and the transpormation of horizontal drain were investigated.

  • PDF

Effects of Soil Moisture on the Growth of Acer Palmatum under Indoor Low Light Intensity (실내의 저광도하에서 토양수분이 단풍나무의 생육에 미치는 영향)

  • 윤지영;김민수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.4
    • /
    • pp.21-28
    • /
    • 2000
  • This study is conducted to analyze effects of soil moisture on the growth of maple(Acer palmatum) under indoor low light intensity. Maples grew under three different light intensities such as sunny place(average 353.2W/$m^2$), half shade(average 7.7 W/$m^2$) and shade/(average 1.9W/$m^2$).Under half shady and shady condition, each 24 planters(2 maples planted in each planter) were used and divided into 3 groups treated with different watering points. Three levels of soil water potential were set for watering points, such as -200mbar, -300mbar or -500mbar. Under sunny condition, there were only group of 8 planters, as comparison. Watering was applied when soil water potentials reached -500maber. The results of plant growth experiment are as followed. 1. Under the shady condition, 32 maples died among 48 maples for 7 months. 9 maples survived, watered at soil water potential -200mbar, 5maples at -300mbar and 2maples at -500mbar. 2. Leaf water content ratios were higher under lower light intensity. For the cell wall became thinner under lower light intensity. 3. Maples in shady were easy to die due to having thin cell wall, therefore they were easy to loss the turgor pressure. 4. In case of half shady condition, the group, watered at soil water potential -200mbar, had much smaller amount of rootlet than -300mbar, because there were excessive soil water. The group, watered at soil water potential -500mbar, had smaller amount of rootlet than -300mbar and there was a remarkable difference in leaf water potential in spite of nearly same soil water potential, because leaves received the water stress under lower soil water potential. 5. When maples grew soundly, the leaf water potential was largely influenced by the soil water potential.

  • PDF

Analysis of Ship Groundings on Soft Sea Beds

  • Simonsen, B. Cerup;Redersen, P. Terndrup
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.1
    • /
    • pp.35-47
    • /
    • 1997
  • The consequences associated with ships running aground depend very much on the soil characteristics of the sea bed and the geometrical shape of the ship bow. The penetration into the sea bed depends on these factors and the penetration is an important factor for the ship motion because it influences the ship heave and pitch motions as well as the friction between the ship and the soil. In this paper a rational calculation model is presented for the sea bed soil reaction forces on the ship bottom. The model is based on the assumption that the penetration of the ship bow generates a flow of pore water through the grain skeleton of the soil. The flow is governed by Darcy\`s law and it is driven by the pressure of the pore water at the bow. In addition to this pore water pressure, the bow is subjected to the effective stresses in the grain skeleton at the bow surface. These stresses are determined by the theory of frictional soils in rupture. Frictional stresses on the bow surface are assumed to be related to the normal pressure by a simple Coulomb relation. The total soil reaction as a function of velocity and penetration is found by integration of normal pressure and frictional stresses over the surface of the bow. The analysis procedure is implemented in a computer program for time domain rigid body analysis of ships running aground and it is verified in the paper through a comparison of calculated stopping lengths, effective coefficients of friction, and sea bed penetrations with corresponding experimental results obtained by model tests as well as large, scale tests.

  • PDF

Fundamental Study for Vertical Fracturing Pressure of Impervious Soil (불투수성(不透水性) 지반(地盤)에서의 종할열주입압(縱割裂注入壓)에 관한 기초적(基礎的) 연구(硏究))

  • Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.43-51
    • /
    • 1986
  • Triaxial compression tests were performed with control of vertical stress, confined pressure(${\sigma}_H$), and injection velocity by means of impervious soil samples with a different grain size, density and grout density. By measuring pore water pressure at the time of vertical fracturing around the bore-hole, relationships between main factors are described, and the factors are pore water pressure, confined pressure, vertical fracturing injection pressure(${\sigma}$) and the tension strength(${\sigma}_t$). The hydraulic fracturing of soft clay was occurred at the pressure which was less than the pressure obtained by the theory of elasticity. It was found that the above result was the influence of pore water pressure due to injection pressure($U_a$) and pore water pressure due to confined pressure($U_i$). Therefore, the vertical injection pressure at the time of fracturing needs to be changed as follows. $${\sigma}=2{\cdot}{{\sigma}_H}-(U_a+U_i)+{\sigma}_t$$.

  • PDF

Development of Equation of the Soil-Water Characteristic Curve for an Unsaturated Soil (불포화의 흙-수분 특성곡선 방정식의 개발)

  • Song, Chang-Seob;Lim, Seong-Yoon;Kim, Myung-Hwan
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.191-194
    • /
    • 2003
  • The purpose of this paper was to derive soil-water characteristic curve equation for unsaturated soil. To this end, a series of suction measured test was conducted on the selected 4 kinds of soil which is located in Korea, used the modified pressure plate apparatus. From the test results, it was proved that characteristic curve changes according to grain size distribution, size of void and fine grained soil contents. Residual degree of saturation(Sr) was decreased with void ratio and changed with fine grained soil contents, parameter ${\lambda}$ and hr was increased with void ratio. Soil-water characteristic curve equation based on the test result was suggested by void ratio or grain size distribution.

  • PDF

A Experimental Study on the Variation of the Pore-water Pressure in the Soil Slope during the Rainfall (강우시 토사사면내의 간극수압변화에 관한 실험적 고찰)

  • Jeung, Eujung;Kim, Hongtaek;Jang, Hyunik;Kim, Kyungsuk;Kang, Inkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2008
  • In this research, model tests have been performed for researching the seepage characteristics in the finite soil slope during the rainfall using a manufactured rainfall simulator. On the basis of the results, it has been analyzed how to change the seepage characteristics due to the duration time of rainfall. We are found that the pore-water pressure was gradually increased as increasing the duration time of rainfall. Specially, at the beginning of rainfall, the pore-water pressure in the middle surface of slope was measured larger than any point. As increasing the duration time of rainfall, the pore-water pressure at the inner part of slope was increased greatly at the collapse due to infiltrating the pore-water within the slope. In the research, it was not easy to get various test results because measuring instruments are high sensitivity and difficult to handle. For the future, the model test results are needed for the various slope angle.

  • PDF

A Laboratory Test for Detecting the Infiltrating Characteristics of Unsaturated Soil in Soil Slide (흙사면 절개지 불포화토의 침투거동 특성에 관한 연구)

  • Kim Man-Il;Chae Byung-Gon;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.487-494
    • /
    • 2005
  • In order to estimated a reason of soil slope failure new measurement technology is demanded to measure a variation of volumetric water content which is a key physical parameter for understanding the slope failure in the field. In this study a laboratory soil tank test were conducted to use RDB and ADR measurement probes for measuring the variation of volumetric water content. These experiments were compared with two physical parameters as volumetric water content and pressure water head which are estimated to the compacted weathered granite soil under the artificial rainfall, 7.5mm/hour, in the whole of two stages. From the results the variation of volumetric water content and pressure water head is represented to nearly similar travel time.