• Title/Summary/Keyword: soil amendments

Search Result 207, Processing Time 0.029 seconds

Effects of Soil Amendments on the Early Growth and Heavy Metal Accumulation of Brassica campestris ssp. Chinensis Jusl. in Heavy Metal-contaminated Soil (중금속 오염 토양에서 안정화제가 청경채의 초기 생육과 중금속 흡수량에 미치는 영향)

  • Kim, Min-Suk;Koo, Namin;Kim, Jeong-Gyu;Yang, Jae-E.;Lee, Jin-Su;Bak, Gwan-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.961-967
    • /
    • 2012
  • There have been many studies about efficiency of amendments for heavy metal stabilization through chemical assessment. The objective of this study was to evaluate the efficiency of several soil amendments (lime, agric-lime, dolomite, steel slag, fly ash and acid mine drainage sludge) on heavy metals stabilization through not only chemical but also biological assessments (phytotoxicity test) in abandoned mining area soil. In order to achieve the goal, we conducted preliminary screening experiment targeting 12 types of crop plants such as radish, young radish, chinese cabbage, winter grown cabbage, cabbage, bok choy, chicory, crown daisy, carrot, chives, spinach, and spring onion. The results of inhibition rates of early plant growth in metal-contaminated soil against non-contaminated soil and the correlations between inhibitions items showed that the bok choy was appropriate specie with respect to confirm the effect of several amendments. Several amendment treatments on contaminated soil brought about the changes in the root and shoot elongation of bok choy after 1 week. Agric-lime, dolomite and steel slag treatments showed the great efficiency of reducing on mobility of heavy metals using chemical assessment. But in contrary, these treatments resulted in the reduction of root and shoot elongation and only AMD sludge increased that of elongation, significantly. When considering both chemical and biological assessments, AMD sludge could be recommended the compatible amendment for target contaminated soil. In conclusion, biological assessment was also important aspect of decision of successful soil remediation.

Laboratory Study on Changes in Hydraulic Conductivity and Chemical Properties of effluent of Soil During Desalinization (간척지(干拓地) 제염과정(除鹽過程)에서 일어나는 토양(土壤)의 수리전도도(水理傳道度)와 유출액(流出液)의 화학적(化學的) 특성변화(特性變化)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Yoo, Sun-Ho;Lee, Sang-Mo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.1
    • /
    • pp.3-10
    • /
    • 1988
  • A laboratory study was carried out to investigate the effects of application level of soil amendments, mixing method of soil amendments, and compost treatment on desalinization by examining the changes in hydraulic conductivity and chemical properties of effluent of the soil during desalinization. 1. The treatment of soil amendments brought about the increase in hydraulic conductivity. 2. The higher the application level of a soil amendment, the higher the hydraulic conductivity and the shorter the time elapsed to complete the desalinization. 3. Complete mixing of calcium compounds was more effective for desalinization than surface mixing. 4. The compost treatment induced the rise in pH and therefore brought about the remarkable drop in hydraulic conductivity. 5. During the desalinization, the changes in physical and chemical properties of the soil were influenced by the kind and application level of soil amendments, mixing method of soil amendment, and compost treatment.

  • PDF

Effects of Fly Ash, Gypsum, and Shell on the Chemical Properties of Soil and Growth of Chinese Cabbage in Acidic Soils (산성토양에서 석탄회,석고,패각시용이 토양화학성과 배추의 생육에 미치는 영향)

  • Ha, Ho-Sung;Kang, Ui-Gum;Lee, Hyub;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.2
    • /
    • pp.164-169
    • /
    • 1998
  • In order to evaluate the utility of the bituminous coal fly ash, gypsum, oyster shell as soil amendments, acid sandy loam soil with low boron content were amended in the upper 15cm with amendments, and then chinese cabbage was cultivated in fall. Amendments treated were, in metric tons per hectare, i ) none(Check) ; ii) 80 fly ash(FA) ; iii) 4shell(SH) ; iv) 56 fly ash+24gypsum (FG) ; v) 40 fiy ash + 24 gypsum +0.8 shell(FGS). On the whole, amendments imoroved soil chemical properties and contents of N, P, K, Ca, and B in leaves. Among treatmens, FA prominently neutralized soil pH and increased available $P_2O_5$ ,B but decreased Fe contents in soils. FGS also affected the increment of exchangeable Ca, Mg, and available B. Yield response in fresh weight of chinese cabbage was in order of 85% for FGS>77% for FG>66% FA>5% for SH plants. Reducing sugar and vitamin-C contents of leaves depending on treatments showed the same tendencies as that in yields, whereas crude fiber opposite to theme. In particular, FA, FG, and FGS plants showed normal growth without boron deficiency symotoms which appeared in Check and SH plants.Taken together, FGS was an effective combination enable to maximize the utility of fly ash, gypsum, and shell as soil amemdments, especially in cabbage yield and quality.

  • PDF

Effects of Soil Amendments Application on Growth of Rice Cultivated in Soils Polluted with Heavy Metal(loid) and on the As and Cd Content in Brown Rice

  • Yoo, Ji-Hyock;Park, Sang-Won;Kim, Won-Il;Lee, Sang-Beom;Oh, Kyeong-Seok;Moon, Byeong-Churl;Kim, Sung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.663-673
    • /
    • 2017
  • Heavy metal(loid) contamination of rice is the main issue in abandoned metal mine area with regard to food safety. A field study was conducted in mine area to see if soil amendments treatment including calcium superphosphate, sulfur, steel slag and S-containing fertilizer could reduce As and/or Cd content in rice grain and increase the growth of rice. The As content in brown rice reduced to 60% compared to the control only in $7.0Mg\;ha^{-1}$ of steel slag treatment. Cd reduction in rice was thought to be not the effect of amendments but the result from the difference in growth and development of rice plant and this could be ascribed to low soil Cd availability to rice plant. Compared with control, increased rice yield of cultivar Hwanggeumnuri was 1.3~2.2 and $1.5Mg\;ha^{-1}$ in calcium super phosphate and S-containing fertilizer treatment, respectively and the trend was also observed in cultivar Ungwang. However, steel slag treatment reduced the Ungwang yield by $0.4{\sim}0.9Mg\;ha^{-1}$. Future work will be needed to establish the agricultural measure with which secure the safety and yield of rice simultaneously.

Change of Soil Physicochemical Properties by Mixed Ratio of 4 Types of Soil Amendments Used in Golf Course (골프장에 사용되는 4가지 토양개량제들의 혼합비율에 따른 토양이화학성의 변화)

  • Kim, Young-Sun;Ham, Suon-Kyu;Lim, Hye-Jung
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.205-210
    • /
    • 2010
  • This study was conducted to investigate the effect of the mixed ratio of the soil amendments, peat, humate, peatmoss and zeolite, on the soil physicochemical properties. The mixed ratios of soil amendments were 0%, 3%, 5%, 7% and 10% (v/v) incorporated with sand which met to the USGA (United State of Golf Association) recommendation. It was measured pH, EC and CEC as a chemical properties. Porosity, capillary porosity, air-filled porosity, bulk density and hydraulic conductivity were also measured to analyze the changes of physical properties. Chemical properties were significantly different by mixture ratios of peat, humate, peatmoss and zeolite. When the results were applied to the USGA standard of the soil physical properties, the optimum mixture ratios of peat, humate and peatmoss were 5%, 3% and 7%, respectively. Air-filled porosity was factor involved in soil physical properties by blending with soil amendments and it was affected on volume of porosity and hydraulic conductivity. To analyze the corelation of mixture ratio versus to physical characters, the ratio of peat and peatmoss was significantly related to capillary porosity and hydraulic conductivity (P<0.05), that of humate hydraulic conductivity (P<0.01), and that of zeolite air-filled porosity and volume of porosity (P<0.05). These results could be used as a basic data for construction USGA sand green.

Effect of Soil Amendments on Arsenic Reduction of Brown Rice in Paddy Fields

  • Kang, Dae-Won;Kim, Da-Young;Yoo, Ji-Hyock;Park, Sang-Won;Oh, Kyeong-Seok;Kwon, Oh-Kyung;Baek, Seung-Hwa;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.2
    • /
    • pp.101-110
    • /
    • 2018
  • There is an increasing concern over arsenic (As) contamination in rice since Codex Committee on Contaminants in Food (CCCF) discuss on maximum levels for As in rice in 2010. This study was conducted to reduce As concentration in rice by soil amendment treatments in paddy field soils contaminated by As. The selected four amendments were poultry manure, agri-lime, steel slag, and gypsum with the addition of 3% or 5% (w/w) on a dry basis. The As reduction effect could not be verified, as a result of the pot test by adding poultry manure to the paddy soil around the mine located in Yesan. Among the agri-lime treated rice cultivated pots, the As concentration increased up to 32.1%. On the other hand, the content of As in the sample pots treated with steel slag and gypsum decreased by 65.4% and 63.4%, respectively. On the basis of the results of these pot experiments, the field test was carried out in the As polluted rice field around the mine located in Yesan, and when the four amendments were treated, the As content in the brown rice reduced in all the amendment treatments compared with the control plot. The As reduction in brown rice of the amendment was confirmed to be higher efficiency by the order of gypsum > steel slag > poultry manure > agri-lime. As a result of pot experiments using paddy soil around the mine located in Seosan, As stabilization efficiency in rice and As reduction effect could not be determined by comparison to the control. From the rice cultivated from agri-lime treated pot, As concentration increased by 15.8% in rice. On the other hand, the As content of the pots treated with steel slag and gypsum decreased by 39.1% and 60.2%, respectively. In conclusion, distinguished As reducing effectiveness could be expected by soil amendment treatments for rice cultivation.

Effects of Amendments on the Phosphate-solubilizing Bacteria in Rice Paddy Soils (논 토양 인산가용화세균에 대한 개량제 시용효과)

  • Suh, Jang-Sun;Noh, Hyung-Jun;Kwon, Jang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.342-347
    • /
    • 2008
  • Phosphate soubilized by microbes can be easily absorbed by plant as the element diffuses into soil solution. The microbes related to phosphate solubilizing activity are affected by the soil amendments such as rice straw compost, and lime. This study was performed to evaluate the effect of amendments to phosphate solubilizer in rice paddy soils. Available phosphate concentration was increased with the ratio of phosphate-solubilizing bacteria to aerobic bacteria in the rice paddy soils. The ratio was high in the plots applied with lime, silicate, and rice straw compost. Phosphate-solubilizing bacteria isolated from the soil were Aquasipirillum, Arthrobacter, Bacillus, Flavobacterium, Micrococcus and Micromonospora, Pseudomonas species. The highest dominant bacterial species was Pseudomonas, and Bacillus was followed.

Effects of nutrient-coated biochar amendments on the growth and elemental composition of leafy vegetables

  • Jun-Yeong Lee;Yun-Gu Kang;Jun-Ho Kim;Taek-Keun Oh;Yeo-Uk Yun
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.967-976
    • /
    • 2023
  • Biochar is emerging as a promising substance for achieving carbon neutrality and climate change mitigation. It can absorb several nutrients via ion bonding on its surface functional groups, resulting in slow dissociation of the bonds. Biochar, like organic fertilizers, contributes to sustainable nutrient management. The purpose of this study was to investigate the effects of nutrient-coated biochar amendments on leafy vegetables production and soil fertility. The nutrient-coated biochar was produced by soaking rice husk biochar in a nutrient solution containing nitrogen (N), phosphorus, and potassium for 24 hours. Nutrient-coated biochar and organic fertilizers were applied to soil at a rate of 120 kg·N·ha-1. The growth components of the leafy vegetables showed that nutrient-coated biochar led to the highest fresh weight (FW) of both lettuce and kale (i.e., 146.67 and 93.54 g·plant-1 FW, respectively). As a result, nutrient-coated biochar amendments led to superior yield compared to the control treatment and organic fertilization. The elemental composition of leafy vegetables revealed that soil amended with nutrient-coated biochar resulted in higher nutrient contents, which was attributed to the high nutrient contents supplied by the rice husk biochar. Soil amendment with nutrient-coated biochar positively enhanced the soil fertility compared to amendment with organic fertilizer. Therefore, nutrient-coated biochar is a promising substance for enhancing agronomic performance of leafy vegetables and improving soil fertility.

Fractionation and Availability of Cu and Zn in Paddy Soils Following a Long-Term Applications of Soil Amendments (토양개량제를 장기연용한 논토양에서 구리와 아연의 분획화 및 유효도)

  • Jung, Goo-Bok;Lee, Jong-Sik;Kim, Won-Il;Yeon, Beong-Yeal;Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.107-113
    • /
    • 1998
  • We investigated the effects of a long term application of soil amendments such as lime, silicate, compost, or combinations of these materials on the contents of Cu and Zn in paddy soil and brown rice. The results obtained from a sequential extraction of Cu and Zn in paddy soils and brown rice, using $H_2O$, $KNO_3$, $Na_2$-EDTA and $HNO_3$ and showed that the most of Cu and Zn were NaOH-extractable (organically bound form) and $HNO_3$-extractable (sulfide and residual form). Cu contents of NaOH and EDTA extractable increased with the long term application of compost while the contents of Zn extracted by $KNO_3$ was decreased even though $HNO_3$ extractable-Zn was prominent chemical form in paddy soils. The percentage and contents of Zn, extracted by $KNO_3$ for each combination treatment of soil amendments, was decreased but the contents of Cu was not affected. The content of NaOH extractable-Cu was proportionally increased with increase in organic matter content irrespective of the extractants used in this experiment. The contents of Zn and exchangeable K were also increased with increase in organic matter content. However, we could not find any relationship between the extractable forms of Cu and Zn, and CEC, OM. while increase in CEC, contents of cations, and organic matter decreased the content of Cu in brown rice.

  • PDF

Evaluations of NPS Reduction using the Rice Straw Mats and Soil Amendments from Steep Sloped Field (볏짚거적과 토양개량제를 활용한 경사지 밭의 비점오염원 저감평가)

  • Won, Chul-Hee;Shin, Min-Hwan;Choi, Yong-Hun;Shin, Jae-Young;Park, Woon-Ji;Lee, Su-In;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.29-36
    • /
    • 2013
  • The objective of the research was to describe the effect of straw mat cover and soil amendments on the reduction of runoff and non-point source load from steep sloped highland agricultural fields. Four $5{\times}30$ m plots on sandy loam soil with 28 % slope were prepared. Experimental treatments were bare (control), rice straw mat cover (3,000 kg/ha) (S), PAM (5 kg/ha)+Gypsum (1 ton/ha) (PG) and rice straw mat cover+PAM+Gypsum (SPG). A variety of lettuce was cultivated and runoff was monitored during a growing season in 2011. Natural monitoring was conducted to three times. Runoff rate of S, PG and SPG plots were significantly lower than those of control plot. Especially, the runoff rate is zero in SPG plot at a first rainfall events. The reduction rate of runoff from the S, PG and SPG plots was 30.8 %, 29.0 % and 81.8 % compared to control plots, respectively. The reduction rate of NPS pollution load of S, PG and SPG was ranged of 50~90 %, 30~70 % and 90~100 %, respectively. Yield of lettuce from S, PG and SPG plots was respectively 400 (567 kg/ha), 320 (453 kg/ha) and 760 (1,067 kg/ha) that of compared to control plots greater than that from control plots (140 kg/ha). We speculated that the experimental treated plots could hold more nutrients and moisture than the control and helped the crop grow healthier. When analyzing the above results, in terms of reduction of runoff and NPS pollution load and crop yields, SPG experimental treatment had the best effect. It was concluded that the use of rice straw mats cover and soil amendments on soil surface could not only reduce the NPS pollution loads in receiving waters but also help increase the crop yield.