• 제목/요약/키워드: soil air $CO_2$ concentration

Search Result 39, Processing Time 0.031 seconds

유류오염대수층에서 고온 공기분사공정법을 통한 TPH, VOCs, $CO_2$ 변화에 관한 특성인자 연구

  • Lee Jun-Ho;Park Gap-Seong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.232-236
    • /
    • 2005
  • In-situ Air Sparging (IAS, AS) is a groundwater remediation technique, in which organic contaminants are volatilized into air as it rises from saturated to vadose soil zone. The purpose of this study was to investigate the effect of environmental conditions on the degradation of VOCs (Volatile Organic Compounds) and $CO_2$ in the unsaturated zone and TPH (Total Petroleum Hydrocarbons) in saturated zone of sandy loam. In the laboratory, diesel (10,000 mg TPH/kg)-contaminated saturated soil. After heating the soil for 36 days, the equilibrium temperature of soil reached to $34.9{\pm}2.7^{\circ}C$ and TPH concentration was reduced to 78.9% of the initial value, Volatilization loss of VOCs in TPH was about 2%, The reduction gradient of $CO_2$ concentration was 0.018/day in air space and 0.0007/day in unsaturated zone.

  • PDF

Soil Air CO2 Concentrations in a Spruce-Fir Forest, Maine, USA

  • Son, Yow Han;Fernandez, Ivan J.;Kim, Zin-Suh
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.2
    • /
    • pp.177-182
    • /
    • 1992
  • Soil air $CO_2$ concentrations were measured in two soil depths (O and B horizon) by (1) the use of the Draeger direct reading chromatographic tubes and (2) syringe gas collections with gas chromatographic detection in a Spodosol supporting low elevation, commercial spruce-fir forest, Maine, USA, Mean soil air $CO_2$ concentrations(%) during the growing season of 1991 ranged from 0.11 in the O horizon by the Draeger method to 0.29 in the B horizon by the gas chromatographic method. Soil air $CO_2$ concentrations by the Draeger method were lower than those obtained using the gas chromatographic method for both soil horizons. However, data from the two methods were significantly(p<0.01) correlated and paralleled each other relative to temporal patterns. Positive and highly significant correlations existed between soil air $CO_2$ concentrations and soil temperature, although correlation coefficients only ranged from 0.13 to 0.32, depending on the method and horizon chosen.

  • PDF

TPH Removal of Oil-Contaminated Soil by Hot Air Sparging Process (고온 공기분사공정에 의한 유류오염대수층의 TPH 제거)

  • Lee, Jun-Ho;Park, Kap-Song
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.665-675
    • /
    • 2007
  • In-situ Air Sparging (IAS, AS) is a remediation technique in which organic contaminants are volatilized from saturated zone to unsaturated layer. This study focuses on the removal and interaction of Volatile Organic Compounds (VOCs) and $CO_2$, and Total Petroleum Hydrocarbon (TPH) in saturated and unsaturated, and air space zone on the unsaturated soil surface. Soil sparging temperature of hot air has risen to $34.9{\pm}2.7^{\circ}C$ from $23.0{\pm}1.9^{\circ}C$ for 36 days. At the diffusing point, fluid TPH concentrations were reduced to 78.7% of the initial concentration in saturated zone when hot air was sparged. The TPH concentrations were decreased to 66.1% for room temperature air sparging. The amount of VOCs for hot air sparging system, in air space, was approximately 26% larger than constant air sparging system. The amount of $CO_2$ was 4,555 mg (in unsaturated zone) and 4,419 mg (in air space) when hot air was sparged was 3,015 mg (in unsaturated zone) and 3,634 mg (in air space) for room air temperature in the $CO_2$ amount. The removals of VOCs and biodegradable $CO_2$ through the hot air sparging system (modified SVE) were more effective than the room temperature air sparging. The regression equation were $Y=976.4e^{-0.015{\cdot}X}$, $R^2=0.98$ (hot air sparging) and $Y=1055e^{-0.028{\cdot}X}$, $R^2=0.90$ (room temperaure air sparging). Estimated remediation time was approximately 500 days, if final saturated soil TPH concentration was set to 1.2 mg/L application of tail effect.

TPH, $CO_2$ and VOCs Variation Characteristics of Diesel Contaminated Aquifer by In-situ Air Sparging (공기분사공정에 의한 유류오염대수층의 TPH, $CO_2$, VOCs 변화 특성)

  • Lee, Jun-Ho;Park, Kap-Song
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.18-27
    • /
    • 2006
  • Air Sparging (IAS, AS) is a ground-water remediation technique, in which organic contaminants are volatilized into air as they rise from saturated to vadose soil zone. This study was conducted to investigate the variation characteristics of TPH, VOCs and $CO_2$ for air sparging of diesel contaminated saturated soil. Initial TPH concentration was 10,000 mg/kg for saturated soil phase and 1,001 mg/L for soil aquifer phase. After 36 days of air sparging, the equilibrium temperature of 2-Dimension experiment system was $24.9{\pm}1.5^{\circ}C$. The saturated soil TPH concentration (in the C10 port close to air diffuser) was reduced to 66.0% of the initial value. The mass amount of $CO_2$ was 3,800 mg and 3,200 mg in air space (C70 port) and in unsaturated soil zone (C50 port), respectively. The VOCs production kinetic parameter was 0.164/day in the air space (C70 port) and 0.182/day in the unsaturated soils (C50 port).

Studies on Effect of $CO_2$ Concentration in Air and Pb Concentration in Soil on Pillbug Growth and Bio-accumulation (대기 중 $CO_2$ 및 토양 중 Pb 농도 증가가 공벌레의 성장과 공벌레 체내 Pb 축적에 미치는 영향에 관한 연구)

  • Whang, Hwa-Yeon;Lee, Sang-Don
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.539-546
    • /
    • 2010
  • In nature, the overall effect of heavy metals on the biota can be influenced by a number of environmental factors like soil characteristics and air pollution by elevated $CO_2$. Pillbugs(Isopoda, Armadillium vulgare) take up heavy metals with their food and store them mainly in the vesicles of hepatopancreas. They accumulate certain metals, occuring in relatively large numbers, are easily collected and identified. Therefore, it has been suggested that total body concentration of metals in pillbugs could be positively correlated to the levels of environmental exposure and that pillbugs could be used as biological indicators of metal pollution and global change by $CO_2$. The aim of the study is to determine effects of heavy metal concentrations in soil and elevated $CO_2$ on pillbugs'body accumulation of heavy metal and growth rate. In this study, pillbugs were collected at five sites (N=287) May 2006. Cu and Zn concentrations in pillbugs were higher than in soils (1.39-41.70 times) than in control. The high bioconcentration of lead in Sangam may be partly associated with reclaimed land uses. Pillbugs in low $CO_2$ and Pb condition showed higher growth rate than in elevated $CO_2$ and Pb condition.

Study on the Combination of In-situ Chemical Oxidation Method by using Hydrogen Peroxide with the Air-sparging Method for Diesel Contaminated Soil and Groundwater (과산화수소를 이용한 현장원위치 화학적 산화법과 공기분사법(Air-sparging)을 연계한 디젤 오염 토양/지하수 동시 정화 실내 실험 연구)

  • Kim, Nam-Ho;Kim, In-Su;Choi, Ae-Jung;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.8-17
    • /
    • 2006
  • Laboratory scale experiments were performed to investigate the removal efficiency of the in-situ chemical oxidation method and the air-sparging method for diesel contaminated soil and groundwater. Two kinds of diesel contaminated soils (TPH concentration : 2,401 mg/kg and 9,551 mg/kg) and groundwater sampled at Busan railroad station were used for the experiments. For batch experiments of chemical oxidation by using 50% hydrogen peroxide solution, TPH concentration of soil decreased to 18% and 15% of initial TPH concentration. For continuous column experiments, more than 70% of initial TPH in soil was removed by using soil flushing with 20% hydrogen peroxide solution, suggesting that most of diesel in soil reacted with hydrogen peroxide and degraded into $CO_2$ or $H_2O$ gases. Batch experiment for the air-sparging method with artificially contaminated groundwater (TPH concentration : 810 mg/L) was performed to evaluate the removal efficiency of the air-sparging method and TPH concentration of groundwater decreased to lower than 5 mg/L (waste water discharge tolerance limit) within 72 hours of air-sparging. For box experiment with diesel contaminated real soil and groundwater, the removal efficiency of air-sparging was very low because of the residual diesel phase existed in soil medium, suggesting that the air-sparging method should be applied to remediate groundwater after the free phase of diesel in soil medium was removed. For the last time, the in-situ box experiment for a unit process mixed the chemical oxidation process with the air-sparging process was performed to remove diesel from soil and groundwater at a time. Soil flushing with 20% hydrogen peroxide solution was applied to diesel contaminated soils in box, and subsequently contaminated groundwater was purified by the air-sparging method. With 23 L of 20% hydrogen peroxide solution and 2,160 L of air-sparging, TPH concentration of soil decreased from 9,551 mg/kg to 390 mg/kg and TPH concentration of groundwater reduced to lower than 5 mg/L. Results suggested that the combination process of the in-situ hydrogen peroxide flushing and the air-sparging has a great possibility to simultaneously remediate fuel contaminated soil and groundwater.

Lab-Scale Biosparging Study to Remediate Diesel-Contaminated Soil and Groundwater : the effect of air injection rate and pattern

  • 조수형;이시진;권순열;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.462-466
    • /
    • 2003
  • This study was conducted to examine the potential of biosparging process in removing diesel contaminated soil and groundwater. The experiment was carried out lab-scale biosparging reactor and the biodegradation rate of diesel was evaluated as function of air injection rate and pattern. When renter was operated as air injection rate of 1000$m\ell$/min and pulsed air injection(15min pulse, 15min downtime), DO concentration in the renter was higher than another operating condition. The evidence for biodegradation of diesel was the $O_2$ utilization and $CO_2$ product following the cessation of sparging. Especially, air injection rate of 2000$m\ell$/min and pulsed air injection(15min pulse, 15min downtime) enhanced the diesel biodegradation during the operating. After 120day, the biodegradation rate of diesel was decreased as the lack of carbon source.

  • PDF

The Effective Evaluation of Soil Remediation Technology by Gas Phase Concentration Trend (가스상 물질의 농도변화를 이용한 오염토양 복원의 타당성 평가)

  • Park, Duck-Shin;Jung, Woo-Sung;Kang, Sun-Ki;Kim, Moo-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1233-1241
    • /
    • 2000
  • The purpose of this study is to see the remediability and pilot system operating condition on diesel contaminated areas. Air permeability(k) and trend of gas phase ($O_2/CO_2/VOCs$) concentration to determine the remediation rate of the contaminated sites are very important. So we tested air permeability and trend of gas phase concentration. Throughout soil vapor extraction(SVE) and bioventing hybrid pilot test on different conditions, the range of air permeability(k) was 1985~1194 darcy. The tests result in soil vapor extraction and bioventing hybrid system was appropriate on this test sites, and the suitable injection air flow rate was $3.5m^3/hr$.

  • PDF

Effects of Global Warming and Environmental Factors of Light, Soil Moisture, and Nutrient Level on Ecological Niche of Quercus acutissima and Quercus variabilis (지구온난화와 환경요소인 광, 토양수분, 영양소가 상수리나무와 굴참나무의 생태 지위에 미치는 영향)

  • Cho, Kyu-Tae;Jang, Rae-Ha;Lee, Seung-Hyuk;Han, Young-Sub;You, Young-Han
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.429-439
    • /
    • 2013
  • This study was conducted to determine the changes of the ecological niche breadth and niche overlap of Quercus acutissima and Quercus variabilis under elevated $CO_2$ concentrations and under elevated temperature conditions. We investigated the growth responses by environmental factor, $CO_2$ concentration, air temperature, light, soil moisture and nutrients. Rising $CO_2$ concentration was treated with 1.6 times than control (ambient) and increased temperature with $2.2^{\circ}C$ above the control (ambient) in the glass greenhouse. Ecological niche breadth and niche overlap was calculated the two oak species (Q. acutissima and Q. variabilis), which were cultivated with light, soil moisture and nutrient gradients at four levels. As a result, the ecological niche breadth of Quercus acutissima was determined to be increased under the warming treatment, but decreased under soil moisture and nutrient environments. The ecological niche breadth of Quercus variabilis was increased under light, soil moisture and nutrients of the warming treatment than control. Ecological niche overlap between Quercus acutissima-Quercus variabilis was increased under light of the warming treatment than control, but decreased under soil moisture and nutrient environments. These results means that two oak species are more severe competition in light environments than soil moisture and nutrient environments. According to analyses of the Cluster and PCA, the two oak species were more sensitive react under light environment than to elevated $CO_2$ concentration or elevated temperature.

An Analysis of Anomalous Radon Variation Caused by M5.8 Gyeong-ju Earthquake (규모 5.8 경주 지진에 의한 토양 내 라돈농도의 이상변화 분석)

  • Kim, Jin-seop;Kim, Minjun;Kim, Sunwoong;Lee, Hyomin
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • The radon concentration in soil varies with environmental factors such as atmospheric temperature and pressure, rainfall and soil temperature. The effects of these factors, therefore, should be differentiate in order to analyzed the anomalous radon variation caused by earthquake events. For these reasons, a comparative analysis between the radon variations with environmental factors and the anomalous variations caused by Gyeong-ju earthquake occurred in September 12, 2016 has been conducted. Radon concentration in soil and environmental factors were continuously measured at a monitoring ste located in 58Km away from earthquake epicenter from January 01, 2014 to May 31, 2017. The co-relationships between radon concentration and environmental factors were analyzed. The seasonal average radon concentration(n) and the standard variation(${\rho}$) was calculated, and the regions of ${\pm}1{\rho}$ and ${\pm}2{\rho}$ deviations from seasonal average concentration were investigated to find the anomalous radon variation related to Gyeong-ju earthquake. Earthquake effectiveness and q-factor were also calculated. The radon concentration indicated the seasonal variation pattern, showing high in summer and low in winter. It increases with increasing air temperature and soil temperature, and has the positive co-relationships of $R^2=0.9136$ and $R^2=0.8496$, respectively. The radon concentration decreases with increasing atmospheric pressure, and has the negative co-relationships of $R^2=0.7825$. Four regions of ${\pm}2{\rho}$ deviation from average seasonal concentration (A1: 7/3~7/5, A2: 7/18, A3: 8/4~8/5, A4: 10/17~10/20) were detected before and after Gyeong-ju earthquake. A1, A2, A3 were determined as the anomalous radon variation caused by the earthquake from co-relationship analyses with environmental factors, earthquake effectiveness and q-factor. During the period of anomalous radon variation, correlation coefficients between radon concentration and environmental factors were significantly lowered compared to other periods such as air temperature ($R^2=0.2314$), soil temperature ($R^2=0.1138$) and atmospheric pressure ($R^2=0.0475$). Annual average radon concentration was also highest at 2016, the year of Gyeong-ju earthquake.