• Title/Summary/Keyword: soil additives

Search Result 125, Processing Time 0.032 seconds

Investigation of engineering properties of clayey soil experimentally with the inclusion of marble and granite waste

  • Baki Bagriacik;Gokhan Altay;Cafer Kayadelen
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.425-435
    • /
    • 2023
  • Granite and marble are widely produced and utilized in the construction industry, resulting in significant waste production. It is essential to manage this waste appropriately and repurpose it in recycling processes to ensure sustainability. The utilization of waste materials such as marble and granite waste (MGW) has become increasingly important in geotechnical engineering to improve the physical and mechanical properties of weak soils. This study investigated the applicability of utilizing MGW and cement (C)-MGW mixtures to improve clayey soil. A series of model plate loading tests were carried out in a specialized circular test tank to assess the influence of MGW and C-MGW mixing ratios on clayey soil samples. The samples were prepared by blending MGW and C-MGW in predetermined proportions. It is found that the bearing capacity of clay soil increased by approximately 71% when using MGW and C additives. Moreover, the consolidated settlement values of the clay soil decreased up to 6 times compared to the additive-free case.

Shear Strength and Permeability Characteristics of Soil Body Reinforced with Linear and Planar Reinforcing Materials (선형보강재와 평면보강재를 적용한 토체의 전단강도 및 투수특성)

  • 차경섭;장병욱;우철웅;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.162-171
    • /
    • 2003
  • Traditional methods of earth reinforcement consist of introducing strips, fabrics, or grids into an earth mass. Recently, discrete fibers are simply added and mixed with the soil, much the same as cement, lime or other additives. The advantages of randomly distributed fibers is the maintenance of strength isotropy, low decrease in post-peak shear strength and high stability at failure. In this study, new composite reinforcement structures which consist of geotextile and randomly distributed discrete fibers were examined their engineering properties, such as shear strength of the composite reinforced soil and permeability of short fiber reinforced soil. The increments of shear strength of composite reinforced soils were the sum of increments by fiber and woven geotextile, respectively. The permeability of short fiber reinforced soil was increased with fiber mixing ratio.

Long-term effects of ZnO nanoparticles on exoenzyme activities in planted soils

  • Kwak, Jin Il;Yoon, Sung-Ji;An, Youn-Joo
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.224-229
    • /
    • 2017
  • Zinc oxide nanoparticles (ZnO NPs) have been used as additives in a variety of consumer products. While these particles may enter the environment, only a limited number of studies have investigated the effects of ZnO NPs on soil exoenzymes. Here, we investigate the long-term effects of ZnO NPs at concentrations of 50 and 500 mg/kg on the activities of six soil exoenzymes in planted soils: Dehydrogenase, fluorescein diacetate (FDA) hydrolase, urease, acid phosphatase, arylsulfatase, and ${\beta}-glucosidase$. Significant effects were observed at one or more time points for all enzymes except for FDA hydrolase. These effects included both decreases and increases in enzyme activity. Our results suggest that ZnO NP treatments of 50 and 500 mg/kg can adversely affect soil enzymes, particularly acid phosphatase and urease, and thus, these data may have implications for phosphorous and nitrogen cycles in the soil.

Development of Pavement method for Farm Roads (기계화 경작로의 포장공법 개발(지반공학))

  • 송창섭;리신호;오무영;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.431-437
    • /
    • 2000
  • The aim of the work described in this paper is to develope a pavement method for farm road. To this ends, a series of material test are conducted on in-situ soil which was mixed additives-coarse aggregate, polypropylene fiber, excellent soil compound etc. With the laboratory test results, in-situ pavement test was conducted during two years. The serious problem of the pavement is not appeared up to this time. And the measurement of field data is continued presently. The majority merits of this pavement method is low cost and using environmental materials.

  • PDF

Development of Lighting Compressed by Injection Yellow Ocher Soil

  • Kwak, Woo-Seob
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.6
    • /
    • pp.452-459
    • /
    • 2008
  • The compressed injection yellow ocher soil is the process-technology by drying the product through sunshine, not by firing like pottery and ceramic ware. It is the technology of development being able to achieve the far infrared ray and humidity adjustment by adding recycling paper, Korean paper and bamboo salt, and it corresponds with the construction enforcement ordinance 2007 as an interior-finishing product which is fire-resistant. In case that the yellow ocher soil would be used as lighting device and interior-finishing material and decoration, it could contribute to an improvement of National Health by avoiding the sick house syndrome and adding humidity adjustment, and it has more efficient economic effect due to using recycle-available additives. Through such developments of the yellow ocher soil products the domestic market of lighting device and construction material can be advanced and the replacement effect of imported goods & also export effect can be expected accordingly.

  • PDF

An Experimental Study on Frost Heaving Characteristics of Soil Stabilized with the Additives (안정처리토의 동상특성에 관한 실험적 연구)

  • Kim, Jae-Young;Ju, Jae-Woo;You, Byung-Ok;Yang, Sung-Kee
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.215-218
    • /
    • 2003
  • In order to study the frost heaving characteristics of soil stabilitized with a quick lime, a cement and a briquette ash, frost heaving tests were performed with 2 kinds of soil sampled at Chonbuk-Do area. Frost heaving of no-stabilizing soil compacted with water content greater than optimum water content was increased as the frost period was increased but in case of samples with water content smaller than optimum water content, the frost period gave no affect about increase and decrease of the frost heaving. Both frost heaving of stabilizing and no-stabilizing soil with water content greater than optimum water content was decreased with the increase of the repetition number of freezing and thawing. There was no increase or decrease of frost heaving in the frost heaving test after 5 times of freezing and thawing.

  • PDF

Stabilization of expansive soil using industrial wastes

  • Mohanty, Soumendra K.;Pradhan, Pradip K.;Mohanty, Chitta R.
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.111-125
    • /
    • 2017
  • Swelling and shrinkage characteristics of expansive fine grained soil cause volumetric changes followed by distress and damage to the structures. Soil stabilization can be explained as the alteration of the soil properties by chemical, mechanical or any other means in order to enhance the engineering properties of the soil. Utilization of industrial wastes in soil stabilization is cost effective and environment friendly. This paper presents an experimental study on stabilization of expansive soil using industrial wastes, viz. fly ash and dolochar. The paper includes the evaluation of engineering properties like unconfined compressive strength and California bearing ratio (CBR) of expansive soil collected from Balasore district of Odisha stabilized with fly ash and dolochar in different proportions and to predict the influence of these additives on engineering properties and strength characteristics of expansive soil. Both fly ash and dolochar were found to increase the CBR and decrease many index properties such as liquid limit, plastic limit, plasticity index, swelling index and UCS, thus enhancing the strength parameters of expansive soil.

A Feasibility Study on the Deep Soil Mixing Barrier to Control Contaminated Groundwater (오염지하수의 확산방지를 위한 대체 혼합차수재의 적용에 관한 연구)

  • 김윤희;임동희;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.53-59
    • /
    • 2001
  • There is a lot of method to manage the insanitary landfill but vertical cutoff walls have been widespreadly used and were installed into the subsurface to act as a barrier to horizontal groundwater flow, The stabilized material such as specialized cement or mixed soil with additives has been generally applied for the materials of the deep soil mixing barrier in korea. The amount of the stabilized material is dependent on the field conditions, because the mixing ratio of the material and the field soil should achieve a requirement in the coefficient of permeability, lower than 1.0$\times$$10^{7}$cm/sec. This study determined the quantity and optimized function ratio of the stabilized material in the formation process of the mixed barrier that was added with stabilized material on the field soil classified into SW-SC under USCS (Unified Soil Classification System). After that the fly ash and lime were selected as an additives an that could improve the function of the stabilized material and then the method to improve the functional progress in the usage of putting into the stabilized material as an appropriate ratio was studied and reviewed. The author used the flexible-wall permeameter for measuring the permeability and unconfined compressive strength tester for compressive strength, and in the view of environmental engineering the absorption test of heavy metals and leaching test regulated by Korean Waste Management Act were performed. As the results, the suitable mixing ratio of the stabilized material in the deep soil mixing barrier was determined as 13 percent. To make workability easy, the ratio of stabilized material and water was proven to be 1 : 1.5. With the results, the range of the portion of the additives(fly ash : lime= 70 : 30) was proven to be 20-40% for improving the function of the stabilized material, lowering of permeability. In heavy metal absorption assessment of the mixing barrier system with the additives, the result of heavy metal absorption was proved to be almost same with the case of the original stabilized material; high removal efficiency of heavy metals. In addition, the leaching concentration of heavy metals from the leaching test for the environmental hazard assessment showed lower than the regulated criteria.

  • PDF

A Study on the Fixation of Heavy Metals with Stabilized Soils in the Landfill Liner (폐기물매립지 차수재로서 고화토의 중금속 고정능력 평가에 관한 연구)

  • 노희정;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.145-149
    • /
    • 2000
  • We performed the geotechnical experiments of the hydraulic conductivity and compressive strength test with the stabilized soil in the laboratory, proved that it is useful to use the stabilized soil as an alternative for natural clay soil. Also, for mixing adding materials in the stabilized soil, it was determined that 1) the optimal mixing ratio of cement : bentonite : stabilizing agent was 90:60:1 of mass ratio(kg) for 1㎥ with soil, 2) it was also possible to use low quality bentonite(B\circled2) classified by swelling grade because of little difference from results of the hydraulic conductivity and compressive strength test with high quality bentonite(B\circled1). According to the results of the fixation ability of heavy metals(Pb$^{2+}$, Cu$^{2+}$, Cd$^{2+}$, Zn$^{2+}$) with soil and additives, authors can conclude that the higher pH condition had the more removal efficiency of heavy metals. B\circled1 and cement had especially high removal efficiency of heavy metals in a whole pH because of high alkalinity.alinity.

  • PDF