• Title/Summary/Keyword: softwood forest

Search Result 122, Processing Time 0.032 seconds

Antifungal Activity of Wood Extracts of Larix leptolepis and Pseudotsuga menziesii againstTrichoderma spp. (Trichoderma 속에 대한 낙엽송 및 미송 추출물의 항균활성)

  • Kim, Ji-Su;Yeo, Hee-Dong;Jung, Ji-Young;Nam, Jung-Bin;Kim, Ji-Woon;Rinker, Danny Lee;Choi, Myung-Suk;Yang, Jae-Kyung
    • Journal of agriculture & life science
    • /
    • v.43 no.3
    • /
    • pp.15-26
    • /
    • 2009
  • This study was undertaken to determine inhibitory compounds from extracts of the softwood (larix leptolepis, Pseudotsuga menziesii) sawdust against Trichoderma spp. The sawdust of L. leptolepis and P. menziesii were hot water extracted, which were with fraction extracted organic solvents. The organic solvent extractions were carried out by n-hexane, methylene chloride, ethyl acetate. The antifungal activity of hot water extracts of L. leptolepis sawdust was determined to be 20.6% inhibition at a concentration of 1,000 ppm against Trichoderma spp. The antifungal activity of P. menziesii sawdust was outstanding about 60.3% against Trichoderma spp. The yields of the fractions of n-hexane soluble, methylene chloride soluble and ethyl acetate soluble from the hot water extract of L. leptolepis sawdust were 4.0%, 6.0% and 8.0%, repectively. However, the yields of the fractions of three solvents of P. menziesii sawdust were 8.0%, 13.0 and 14.0% correspondingly. The antifungal activity of n-hexane soluble fraction from hot water extracts of L. leptolepis sawdust was highest to about 68.5% to 79.9% against Trichoderma spp. compared to others. The antifungal activities of n-hexane soluble fraction from hot water extracts of P. menziesii sawdust showed 68.5%, 71.4%. 71.9%, 75.7% and 82.3% against T. aggressivum, T. atroviride, T. harzianum, T. koningii and T.viride, respectively. The n-hexane soluble fraction revealed much higher antifungal activity than the other fractions did. This study demonstrated that the n-hexane fraction of the hot water extracts of L. leptolepis and P. menziesii exhibited the greatest antifungal activity against Trichoderma spp.

Effects of Molecular Weight of Polyethylene Glycol on the Dimensional Stabilization of Wood (Polyethylene Glycol의 분자량(分子量)이 목재(木材)의 치수 안정화(安定化)에 미치는 영향(影響))

  • Cheon, Cheol;Oh, Joung Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.71 no.1
    • /
    • pp.14-21
    • /
    • 1985
  • This study was carried out in order to prevent the devaluation of wood itself and wood products causing by anisotropy, hygroscopicity, shrinkage and swelling - properties that wood itself only have, in order to improve utility of wood, by emphasizing the natural beautiful figures of wood, to develop the dimensional stabilization techniques of wood with PEG that it is a cheap, non-toxic and the impregnation treatment is not difficult, on the effects of PEG molecular weights (200, 400, 600, 1000, 1500, 2000, 4000, 6000) and species (Pinus densiflora S. et Z., Larix leptolepis Gordon., Cryptomeria japonica D. Don., Cornus controversa Hemsl., Quercus variabilis Blume., Prunus sargentii Rehder.). The results were as follows; 1) PEG loading showed the maximum value (137.22%, Pinus densiflora, in PEG 400), the others showed that relatively slow decrease. The lower specific gravity, the more polymer loading. 2) Bulking coefficient didn't particularly show the correlation with specific gravity, for the most part, indicated the maximum values in PEG 600, except that the bulking coefficient of Quercus variabilis distributed between the range of 12-18% in PEG 400-2000. In general, the bulking coefficient of hardwood was higher than that of softwood. 3) Although there was more or less an exception according to species, volumetric swelling reduction was the greatest in PEG 400. That is, its value of Cryptomeria japonica was the greatest value with 95.0%, the others indicated more than 80% except for Prunus sargentii, while volumetric swelling reduction was decreased less than 70% as the molecular weight increase more than 1000. 4) The relative effectiveness of hardwood with high specific gravity was outstandingly higher than softwood. In general, the relative effectiveness of low molecular weight PEG was superior to those of high molecular weight PEG except that Quercus variabilis showed more than 1.6 to the total molecular weight range, while it was no significant difference as the molecular weight increase more than 4000. 5) According to the analysis of the results mentioned above, the dimensional stabilization of hardwood was more effective than softwood. Although volumetric swelling reduction was the greatest at a molecular weight of 400. In the view of polymer loading, bulking coefficiency reduction of swelling and relative effectiveness, it is desirable to use the mixture of PEG of molecular weight in the range of 200-1500. To practical use, it is recommended to study about the effects on the mixed ratio on the bulking coefficient, reduction of swelling and relative effectiveness.

  • PDF

Utilization of Kenaf Cultivated in Korea (II) - Physical properties of kenaf TMP and KP - (국내산 Kenaf 이용에 관한 연구 (제2보) - Kenaf TMP와 KP의 물리적 성질 -)

  • Lee, Myoung-Ku;Yoon, Seung-Lak
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.45-52
    • /
    • 2007
  • Whole, bast and core fibers of kenaf cultivar Tainung-2 were pulped under different pulping methods, thermomechanical and kraft pulping methods. The physical and optical properties of kenaf TMP(thermomechanical pulp) and KP(kraft pulp) handsheets were investigated and the results from the study are summarized as follows: Yields of TMP and KP were $77{\sim}87%\;and\;43{\sim}52%$, respectively. There was no significant change in apparent density between kenaf KP and USKP(unbleached softwood kraft pulp) but TMP showed a little lower apparent density. Bast pulp had the lowest apparent density regardless of pulping methods. Tensile strength of kenaf KP was higher than that of TMP but similar to that of USKP. Both TMP and KP handsheets of bast fraction showed the highest tear strengths among whole, bast, and core fractions. Core fraction showed the lowest tear strengths under different pulping methods. In general burst strength of kenaf pulp under different pulping methods was lower than that of USKP, and kenaf pulp had better stiffness than USKP. Brightness of kenaf KP and TMP was higher than that of USKP. There was no significant variation in opacity between kenaf pulp and USKP even though kenaf pulp showed a little lower opacity. The main difference in paper quality between the core fiber and bast fiber is derived from the fact that bast fiber is long and thin, whereas core fiber is short and thick.

Changes in the Species of Woods Used for Korean Ancient and Historic Architectures (우리나라 건축물에 사용된 목재 수종의 변천)

  • Park, Won-Kyu;Lee, Kwang-Hee
    • Journal of architectural history
    • /
    • v.16 no.1
    • /
    • pp.9-28
    • /
    • 2007
  • We investigated the changes in the species of the woods used for Korean ancient and historic architectures, which include prehistoric excavated relics and existing wooden buildings in South Korea. The species data were collected from various sources such as excavation and repair reports, journal papers, and a few unpublished documents. We divided the building Periods as Paleolithic, Neolitic, Bronze Ages, Iron Age/Three Kingdoms, Koryo, Joseon (early, middle, late) and modem periods. In prehistoric periods, hardwoods were major species. Oak (Quercus spp.) woods dominated (94 percent in average); the others (5%) were Juglans mandshurica, Platycarya strobilacea, Castanea crenata, and few softwoods(1%). During Iron Age and Three Kingdom periods, oaks remained as a major species (57%) and others Platycarya strobilacea(21%), Castanea crenata(13%), and Pinus spp. (6%). The oak woods decreased in Koryo period and they occupied only 1.1%. Instead of oaks, pine (Pinus spp., 71%) and Zelkova serrata (22%) dominated in Koryo. In early and middle Joseon periods, pine woods (73%) remain as a major species and the others were oaks (14%) and Zelkova serrata (9%). As late Joseon came, the pine woods occupied more than 88%. In the late 19th and early 20th centuries, a few boreal species such as larch (Larix spp.) and spruce (Picea spp.), which grow in cold area, were found. We believe they were transported from northern Korea. The existing buildings in Korea are mainly from Joseon period and a few from late Koryo periods. During these periods, pine woods were used for most buildings. For such reason, pine woods were known as 'representative materials for historic buildings'. but earlier times, broad-leaved trees, i.e., oak and Zelkova woods were major materials. The changes in building materials resulted from both climate and human impacts. The dry climate and disturbed forests induce more pines in the mountains. We also compared the wood qualities of the species and found that Zelkova woods were superior ones and deserved more planting for future demands in the repair for historic buildings.

  • PDF

Biodegradation of Kraft Lignins by White-Rot Fungi(I) -Lignin from Pitch Pine- (백색부후균에 의한 크라프트 리그닌의 분해(I) -리기다소나무 리그닌-)

  • 김명길;안원영
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.56-70
    • /
    • 1998
  • This study was carried out to investigate the structural characteristics of kraft lignin and the wood degrading characteristics, the productivity of ligninolytic enzymes and the enzymatic degradation of kraft lignin by white-rot fungi. To purify kraft lignin, precipitation of kraft pulping black liquors of pitch pine meal was done by titration with lN $H_{2}SO_{4}$ reaching to pH 2, and isolation of the precipitates done by centrifugation. The isolated precipitates from pitch pine were redissloved in lN NaOH, reprecipitated by titration with lN $H_{2}SO_{4}$, washed with deionized water, and kept ofr analysis after freeze drying. Fractionation of the precipitates in solution by successive extraction with $CH_{2}Cl_{2}$ and MeOH, and the fractionates were named SwKL, SwKL I, SwKL II, and SwKL III for pitch pine kraft lignin. The more molecular weights of kraft lignin increased, the less phenolic hydroxyl groups and the more aliphatic hydroxyl groups. Because as the molecular weights increased, the ratio of etherified guaiayl/syringyl(G/S ratio) and the percentage were increased. The spectra obtained by 13C NMR and FTIR assigned by comparing the chemical shifts of various signals with shifts of signals from autherized ones reported. The optimal growth temperature and pH of white-rot fungi in medium were $28^{\circ}C$ and 4.5-5.0, respectively. Especially, in temperature and pH range, and mycelial growth, the best white-rot fungus selected was Phanerochaete chrysosporium for biodegradation. For the degradation pathways, the ligninolytic fungus jcultivated with stationary culture using medium of 1% kraft lignin as a substrate for 3 weeks at $28^{\circ}C$. The weight loss of pitch pine kraft lignin was 15.8%. The degraded products extracted successively methoanol, 90% dioxane and diethyl ether. The ether solubles were analyzed by HPLC. Kraft lignin degradation was initiated in $\beta$-O-4 bonds of lignin by the laccase from Phanerochaete chrysosporium and the degraded compounds were produced from the cleavage of $C\alpha$-$C\beta$ linkages at the side chains by oxidation process. After $C\alpha$-$C\beta$ cleavage, $C\alpha$-Carbon was oxidized and changed into aldehyde and acidic compounds such as syringic acid, syringic aldehyde and vanilline. And the other compound as quinonemethide, coumarin, was analyzed. The structural characteristics of kraft lignin were composed of guaiacyl group substituted functional OHs, methoxyl, and carbonyl at C-3, -4, and -5 and these groups were combinated with $\alpha$ aryl ether, $\beta$ aryl ether and biphenyl. Kraft lignin degradation pathways by Phanerochaete chrysosporium were initially accomplished cleavage of $C\alpha$-$C\beta$ linkages and $C\alpha$ oxidation at the propyl side chains and finally cleavage of aromatic ring and oxidation of OHs.

  • PDF

Study on the check by static driving nail in softwood (정적(靜的) 못 박기에 의(依)한 침엽수재(針葉樹材)의 할열(割裂))

  • Shim, Sang-Ro;Kim, Su-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.15-20
    • /
    • 1976
  • This is the abstract of the study on the check by static driving nail in Pinus koraiensis Sieb. et Zucc., Abies holophylla Maximowicz, and Larix leptolepis Gordon Pinet. which are commercial woods and main forestation species in Korea. The static driving resistance of nail is decresed straightly and the surface and back check's length and width were increased in proportion to increase of the moisture content, but the surface check length and width were over twice as large as the back check, also the check were happened in order of Pinus koraiensis Sieb. et Zucc., Abies holophylla Maximowicz., and Larix leptolepis Gordon Pinet. As the driving nail speed was increased, surface check length and width were increased and the back check was over twice as large as the surface check.

  • PDF

Screening of White Rot Fungi with Selective Delignification Capacity for Biopulping (백색목재부후균중 Biopulping에 이용가능한 선택적 리그닌분해균의 스크리닝)

  • Lee, Jong-Kyu;Oh, Eun-Sung
    • The Korean Journal of Mycology
    • /
    • v.26 no.2 s.85
    • /
    • pp.144-152
    • /
    • 1998
  • To obtain white rot fungi which have selective delignification capacity and can be used in biopulping processes, 94 different wood rotting fungi were screened and the capabilities of selected species were evaluated on deciduous and coniferous wood blocks. White rot fungi, first of all, were selected by simple enzyme tests, i.e., cellulase activity test; phenol oxidase activity test; laccase and peroxidase activity test. Most organisms that gave a positive Bavendamm gave a strongly positive laccase test with syringaldazine whereas most of those that gave a negative Bavendamm test also negative test for laccase and peroxidase, even if some exceptions were noted. Wood decay experiement were carried out to select fungal species with selective lignin-degrading ability by inoculating selected fungi to both wood blocks of Populus tomentiglandulosa and Larix leptolepis. After 12 weeks of incubation, weight losses, lignin losses, and morphological characteristics of the decayed wood were investigated. Almost all fungi tested caused 2 or more times of weight losses in P. tomentiglandulosa than in L. leptolepis, while no weight losses were detected from the un-inoculated wood blocks. Ceriporiopsis subvermispora and Phanerochaete chrysosporium were the best delignifiers for both hardwood and softwood. P. chrysosporium, however, was less effective than C. subvermispora. Bjerkandera adusta and two unidentified spp. caused delignification for only P. tomentiglandulosa. B. adusta caused simultaneous rot of all cell wall components, resulted in thinning of the secondary cell wall layers. Other fungi caused selective delignification resulting in the removal of lignin from middle lamella and separation of cells from each other.

  • PDF

Fermentation of Waste Woody Biomass for the Production of Bioenergy (바이오에너지생산을 위한 목질계 폐바이오매스의 발효)

  • Cho, Nam-Seok;Choi, Tae-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.147-158
    • /
    • 2008
  • In this study, fermentation characteristics of waste agricultural and forest biomass for production of heat energy were focused to be used in agricultural farm households. The purpose of this study was focused on seeking practical utilization of agricultural and forest biomass wastes in agricultural farm households in the form of thermal energy by means of simple fermentation process. Fermentation process was performed in terms of different raw-materials and their mixture with different ratios. Urea, lime, and bioaids were added as fermenting aids. Moisture contents of fermenting substrates were adjusted to 55~65%. In order to optimize the fermentation process various factors, such as raw-materials, moisture contents, amount of fermenting aids, and practical measurement of hot-water temperature during fermentation were carefully investigated. The optimum condition of fermenting process were obtained from hardwood only and hardwood: softwood (50 : 50) beds. In case of hardwood only the highest temperature was recorded between 60 to $90^{\circ}C$ the lowest temperature was determined to more or less $40^{\circ}C$ and the average temperature was ranged to $50{\sim}60^{\circ}C$ and this temperature ranges were maintained up to 20~30 days. The optimum amount of additives were estimated to ca. 15 kg of urea, 20 kg of bioaids, and 10 kg of lime for 1 ton of substrate. To reach the highest temperature the optimum moisture content of fermenting substrate was proved to 55% among three moisture content treatments of 45%, 55% and 65%. The temperature of hot-water tank installed in fermenting bed of hardwood : grass (50 : 50) showed very different patterns according to measuring positions. In general, temperatures in the mid- and upper-parts of substrate piling were relative higher than lower and surface parts during 45-day fermentation process. The maximum temperature of fermenting stage was determined to $65^{\circ}C$, minimum temperature, more or less $40^{\circ}C$, and average temperature was $60^{\circ}C$. The water temperature of tank exit was ranged to $33{\sim}48^{\circ}C$ during whole measuring periods. It could be concluded that fermentation process of waste agricultural and forest biomass produces a considerable amounts of heat, averaging about $50{\sim}60^{\circ}C$ for maximum 3 months by using the heat exchanger (HX-helical type).

Development of Heat Exchanger for Fermentation Heat Utilization from Waste Woody Biomass (목질계 폐바이오메스의 발효열이용 열교환기의 개발)

  • Cho, Nam-Seok;Choi, Tae-Ho;Kim, Hong-Eun;Lee, Suk-Ho;Lee, Chung-Koo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.94-104
    • /
    • 2009
  • It is urgently required to develop the production of fermentation-heat energy from the waste agricultural and forest biomass and its effective heat exchanging system for the supply of warm water to rural households and greenhouses. In this study 3 helical-type and 1 plate-type heat exchangers using 3 different waste biomasses [e.g. hardwood (HW) sawdust (100%), softwood (SW) sawdust : HW sawdust (50 : 50) and HW sawdust : grass (90 : 10)] were applied in order to find out the best heat recovery system. The heat exchanger was basically considered to improve the overall heat recovery efficiency, to minimize heat loss and to simplify manufacturing, assembling and breaking up the fermenting beds. The helical-type heat exchanger (HX-H3) installed in fermenting bed of HW sawdust : grass (90 : 10) showed relatively higher temperature profiles, in particular mid- and upper-parts than lower and surface parts during 45-day fermentation process. The maximum temperature was ranged from $40^{\circ}C$ to $65^{\circ}C$ with average $60^{\circ}C$. The water temperature of tank outlet was ranged to $33{\sim}48^{\circ}C$ during whole measuring periods. By the way plate-type one (HX-P) installed in same biomass compositional fermenting bed showed $64.5{\sim}76.5^{\circ}C$ at center part, and $43{\sim}56^{\circ}C$ and $42{\sim}58^{\circ}C$, water tank and tank outlet temperatures, respectively, during 100 day measurement. It could be concluded that the plate-type heat exchanger (HX-P) provides not only the effective heating for the rural households and greenhouses, but also having the best heat recovery performance, easy manufacturing, assembling and breaking up the systems.

Possibility of Substituting Softwoods for Tropical Hardwoods of Door Frames (침엽수재(針葉樹材)의 남양활엽수(南洋闊葉樹) 문틀재(材) 대체(代替) 가능성(可能性) 조사(調査))

  • Kang, Ho-Yang;Jang, Sang-Sik;Lee, Hwa-Hyoung
    • Korean Journal of Agricultural Science
    • /
    • v.21 no.2
    • /
    • pp.103-110
    • /
    • 1994
  • Since the supply of the Southeast Asian tropical timber decreases and its price steeply increases in the international lumber market, door and window frame manufacturers in this country are eagerly searching for their substitutes. This is the first step to replace Southeast Asian tropical timber by low grade North American softwoods, whose reliable and steady supply is expected, but their appearances are not as good as the tropical timber. In this study, knot distribution on the softwood boards and their warp were examined The yield and production cost were also calculated. The average numbers of knots on a door frame were 7.2 for Douglas-fir and 3.4 for Western hemlock. Only 11% of the knots of Douglas-fir door frames are larger than 5cm in diameter, while are 35% of the knots of Western hemlock. The deformations of door frames, after 2 months air-drying, were measured with a warp table. The deformations of Western hemlock door frames were mostly less than 6mm, while those of Douglas-fir distributed in the range of 0.5 and 9.5mm. The yield of Western hemlock is higher than that of Douglas-fir. It can be concluded that the door frames made of the softwoods are compatible with those made of the tropical timber in most aspects except appearance.

  • PDF