• Title/Summary/Keyword: soft magnetic film

Search Result 100, Processing Time 0.029 seconds

Study on Heterogeneous Structures and High-Frequency Magnetic Properties Amorphous CoZrNb Thin Films (비정질 CoZrNb 박막의 불균일 구조와 고주파 자기특성에 관한 연구)

  • 정인섭;허재헌
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.31-36
    • /
    • 1991
  • Structural and compositional heterogeneities of sputter deposited, amorphous $Co_{87}Zr_{4}NB_{9}$ thin films were investigated using TEM and EDS with windowless detector. The films deposited with substrate bias and annealed in rotating magnetc field showed two amorphous phases of Co-rich region and (ZrNb)oxide-rich region, and revealed 'ultra-soft' magnetic properties. Revesible bias-responses and overdamped frequency responses, along with small Hc, Hk and Mr/Ms ratio, give the possibility of ultra-soft magnetic behavior fo CoZrNb thin films. We proposed the vortex type magnetization distribution in remanent state which was correlated with the thin film heterogeneity. Then, the ultra-soft characteristics of the compositionally heterogeneous films were explained by the spin vortices that minimized the total magnetostatic and exchange coupling energies.

  • PDF

Fabrication and characteristics of soft magnets on paper (연자성 박막 제지의 형성 및 특성)

  • 김용성;신경호;김광호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.96-99
    • /
    • 2001
  • The formation of soft magnets on paper(SMOP) is proposed for the first time and we have demonstrated it successfully. Iorn was used to form the soft magnet thin film on paper. And Cr layer was used as a buffer layer because the roughness of substrate(paper) is not negligible. The maximum magnetization of Cr/Fe/Cr/Paper(Fe:5000${\AA}$) is about 1000 [emu/cc] and the coercive field is about 80 [Oe.]. It is necessary to reduce the coercivity and to enlarge the magnetization value of SMOP to perform a good soft magnetic characteristics on paper. On, the permalloy material is the proper candidate for its high permeability, low coercivity and high magnetization values.

  • PDF

Magnetic Properties of Three-layered Ferromagnetic Films with a NiFeCuMo Intermediately Super-soft Magnetic Layer (강자성층 사이에 초연자성 NiFeCuMo 중간층을 삽입한 3층 박막구조의 자기적 특성)

  • Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.129-133
    • /
    • 2010
  • Two-layered ferromagnetic alloy films (NiFe, CoFe) with a Conetic (NiFeCuMo) intermediately soft magnetic layer of different thickness were investigated to correlate the coercivity values and magnetization process with the strength of saturation field of hard axis. Thickness dependence of the $H_{EC}$ (coercivity of easy axis), $H_{HS}$ (saturation field of hard axis.), and X (susceptibility) of NiFe and NiFeCuMo thin films for the glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared by the ion beam deposition method was measured. The magnetic properties $H_{EC}$, $H_{HS}$, and X of two-layered ferromagnetic CoFe, NiFe films with a NiFeCuMo intermediately super-soft magnetic layer were strongly depended on the thickness of NiFeCuMo layer. The value of the coercivity and magnetic susceptibility of the NiFeCuMo film decreased by 25% and doubled relative to that of the NiFe film.

Magnetic Properties of $(\textrm{Fe}_{1-x}\textrm{Co}_{x})_{89}\textrm{Zr}_{11}$ Amorphous Films(II) ($(\textrm{Fe}_{1-x}\textrm{Co}_{x})_{89}\textrm{Zr}_{11}$ 비정질 자성박막의 자기특성(II))

  • Kim, Sang-Won
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.831-836
    • /
    • 1999
  • Magnetic properties of (Fe(sub)1-xCo(sub)x)(sub)89Zr11 amorphous films fabricated by RF sputtering method have been investigated as a function of Co content x. By means of two step field annealing at 190~20$0^{\circ}C$ for 10 minutes in the magnetic field of 130 Oe, the film with x=0.4 among the samples shows the superior soft magnetic properties in spite of showing the high magnetostriction. For example, the obtained properties of coercivity and differential permeability measured in an exciting field of 10 mOe at the frequency of 8.7 MHz are 0.25 Oe and 280, respectively. It is confirmed that such behavior is due to the variation of magnetic anisotropies caused by a optimal compressive stress within the film.

  • PDF

Magnetic Characteristics of CoNbZr amorphous Films with Pd addition

  • Song, J.S.;Wee, S.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.90-95
    • /
    • 2003
  • The present paper is to investigate the phase stability and soft magnetic properties of amorphous CoNbZr films when Pd is added as a substitution for CoNbZr alloys. The films were prepared by a RF magnetron sputtering method. The CoNbZrPd films deposited on Si wafers exhibited amorphous structures being independent upon the amount of Pd added in the films. On the addition of 4.34% Pd, the excellent soft magnetic characteristics of the films were observed with a coercive force of 0.54 Oe and an anisotropy field of 11 Oe, whereas a coercive force of 1 Oe and an anisotropy field of 3.5 Oe were shown in the film without the addition of Pd. The increased anisotropy field and low coercive force of the films may be attributed to the occupancy of Pd in the preferred sites parallel to the external magnetic field applied on the deposition process. A permeability of about 1100 was kept constant in the operation frequency ranging up to 100 MHz, which can be explained by the Landau-Lifshitz formula.

  • PDF

Nano-Granular Co-Fe-AI-O Soft Ferromagnetic Thin Films for GHz Magnetic Device Applications

  • Sohn, Jae-Cheon;Byun, Dong-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.143-147
    • /
    • 2006
  • Co-Fe-Al-O nanogranular thin films were fabricated by RF-magnetron sputtering under an $Ar+O_2$ atmosphere. High resolution transmission electron microscopy revealed that the Co-Fe-Al-O films are composed of bcc (Co, Fe) nanograins finer than 5 nm and an Al-O amorphous phase. A very large electrical resistivity of $374{\mu}{\Omega}cm$ was obtained, together with a large uniaxial anisotropy field of 50 Oe, a hard axis coercivity of 1.25 Oe, and a saturation magnetization of 12.9 kG. The actual part of the relative permeability was measured to be 260 at low frequencies and this value was maintained up to 1.3 GHz. The ferromagnetic resonance frequency was 2.24 GHz. The resulting Co-Fe-Al-O nanogranular thin films with a high electrical resistivity and high resonance frequency are considered to be suitable for GHz magnetic device applications.

A Study on the Magnetic Properties of the Co-Ni-P thin Plate by Electroless Plating (무전해도금법에 의한 Co-Ni-P 박막의 자기적특성에 관한 연구)

  • Kim, C.W.;Lee, C.;Yoon, S.R.;Joung, I.
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.1013-1019
    • /
    • 1995
  • The thin plate of Co-Ni-P was deposited on the polyester film by the electroless plating method. Through present experiments, deposition rates and metal compositions of the plates were determined according to compositions of solution, pH and temperature. Also, magnetic properties of plates were examined according to metal compositions. Considering magnetic properties and deposition rates of electroless plating, the best condition was obtained as pH of 8.5 and 90℃. It was observed that metal compositions were evidently varied by the pH of solutions and the concentration of complex agents. However. they were not affected by other factors. At the optimum condition, the composition of the plate was Co(78%), Ni(16%), and P(6%). Also, it was found that the coercive force was 370 Oe, and squareness was 0.65 at this condition. Magnetic properties (hard or soft) of thin plates were determined by metal compositions. Therefore. the plate became soft magnetic plate as the composition of nickel increased over 30 per cents. The crystal structure of the soft magnetic plate was found to be amorphous in which it was strongly oriented to the (111)phahe of nickel. On the ohter hand, the hard magnetic place was found to be hcp crystalline of α-cobalt which was oriented to the (101)phase of cobalt and the (100)phase of cobalt.

  • PDF

The Effect of Composition and Current Condition on Magnetic Properties of Co-Fe-Ni Soft Magnetic Alloy (합금 조성과 전류조건이 CoFeNi 3원계 합금의 자기특성에 미치는 영향)

  • Jeung, Won-Young;Kim, Hyun-Kyung;Lee, Jeong-Oh
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.241-245
    • /
    • 2005
  • CoFeNi alloys are some of the most studied soft magnetic materials because of their applications as write-head core materials in HDD and MEMS. Ternary CoFeNi films with high saturation magnetic flux density, Bs and low coercivity, He were successfully grown by electrodeposition. The optimal composition was $Co_{30}\;Fe_{34}\;Ni_{36}(at\%)$, and Bs and Hc were 1.9 T and 0.16 A/m, respectively. The XRD and TEM results show that the low Hc of the CoFeNi films was due to very fine crystal particles and mixed fcc and bcc phases.