• Title/Summary/Keyword: soft ground improvement

Search Result 340, Processing Time 0.03 seconds

An Experimental Study for Strength Improvement of Soft Ground using Hardening Agent and Silicate Mineral Power (수용성 고화재와 규산염광물 결합재를 활용한 지반개량재의 실험적 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Cho, Jinwoo;Lee, JuHyung;Lee, Kyu-Hwan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.8-15
    • /
    • 2015
  • The demand for environmental consideration is on the increase in civil engineering. This study focuses on the development of technology to reduce the use of carbonate cement and improve its performance by using a silicate mineral and hardening agents, and presents the test results for the demonstrative evaluation of the properties of the raw material. Highly active feldspar was used as a binder to augment the bonding of the carbonate cement, and their change in strength was observed after test piece construction with the addition of soluble hardening agent. The uniaxial compression strength of the test piece of the general Portland cement with the addition of 0.5% soluble hardening agent, showed an increase by 33% and that of the test piece of cement with the addition of 70% substituted with feldspar increased by 28%. The strength of viscous soil; classified as soft ground, showed an increase of a maximum of 1.7 times when it was mixed with cement and solidifier depending on the curing period. These tests confirmed that a soluble solidifier is effective for improving the strength of a cement binder and that the highly active feldspar can be used as a binder.

Characteristics of Vacuum Consolidation by Comparing with Surcharge Loading Consolidation (성토재하공법과 비교한 진공압밀공법의 압밀특성 분석)

  • Sim, Dong-Hyun;Lee, Jae-Hwan;Jeong, Sang-Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5C
    • /
    • pp.201-208
    • /
    • 2010
  • In this study, the ground settlement was investigated by using monitoring data of the test sites where vacuum consolidation method and surcharge method were applied for improving deep soft soil. The monitoring data are chosen in ${\bigcirc}{\bigcirc}$ area port construction site reclaimed with very soft dredged clay. These data are analyzed to compare the consolidation characteristics between the different loading methods for soil improvement. Through analysis of the loading time, it is shown that the ground settlement reaches its allowable value under vacuum consolidation loading by about 45% faster than that of the surcharge loading consolidation. This could be explained that vacuum consolidation method makes the isotropic consolidation condition so that the time for reaching a certain final preloading without soil failure can be shortened.

Evaluation of Mechanical Characteristics and Applicability of Clayey Sand by Fines Content (세립분 함유율에 따른 점토질 모래의 역학적 특성 및 적용성 평가)

  • Jung-Meyon Kim;Jun-Young Ahn;Jae-young Heo;Seung-Joo Lee;Young-Seok Kim;Beom-Soo Moon;Yong-Seong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.47-59
    • /
    • 2023
  • In this research, laboratory tests were conducted on clayey sand (SC) to analyze its physical properties, compaction/permeability characteristics, and stress-strain behavior. The main objective was to determine the transitional fines content at which the mechanical properties of sand transition to those of clay, resulting in a change in the geotechnical behavior of the material. Additionally, to assess the practical applicability of SC soil, field data from a soft ground improvement site with significant settlement issues were collected. The settlement characteristics derived from laboratory tests and numerical simulations were then compared and analyzed in relation to the actual settlement data obtained from the field, aiming to evaluate the suitability of the SC soil as a compaction target layer. The laboratory tests and compaction analysis showed that the SC soil exhibited a distinct change in mechanical properties, shifting from sandy behavior to clayey behavior when the fines content exceeded 25%. This transition in mechanical behavior was found to be closely correlated with the content of clay particles within the material. Through numerical simulations of the soft ground site, it was verified that the use of clayey sand with a fines content exceeding the transitional level as a compaction target layer resulted in settlements that closely aligned with the measured settlements, with an average agreement of 91.2%. Based on these findings, it is deemed advisable to incorporate clayey sand with a fines content exceeding the transitional level as part of the compaction target layer in the design of soft ground improvements.

Comparison on the Performance of Soil Improvement in Thick Soft Ground Using Single-Core and Double-Core PBD (단일 및 이중 코어 PBD에 의한 대심도 연약지반 개량 효과에 관한 비교연구)

  • Yang, Jeong-Hun;Hong, Sung-Jin;Kim, Hyung-Sub;Lee, Woo-Jin;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.33-45
    • /
    • 2009
  • The conventional single-core PBDs have been widely used in order to accelerate consolidation settlement of soft grounds. When using the single-core PBD in a thick clay deposit, a delay of consolidation may occur due to high confining pressure in the thick deposit and necking of drains. This study is to compare the performances of soil improvement by the single-core and double-core PBD installed at a site in Busan New Port which exhibits approximately a 40m-thick clay layer. An in-situ test program was performed at the test site where a set of the double-core PBDs and single-core PBDs were installed to compare the efficiency of each drain. In addition, the discharge capacity of each PBD has been measured using the modified Delft Test. A series of laboratory tests for estimating in-situ soil properties have also been performed in order to obtain input parameters for a numerical program ILLICON. The discharge capacity of the double-core PBD is higher than that of the single-core PBD in the modified Delft Test. However it is observed from the comparative in-situ test and numerical analysis that there is no difference in the performance of ground improvement between the two drain systems. This discrepancy comes from the fact that the amount of water released during consolidation in most common field conditions is much smaller than the capacity of even the single core PBD. And thus, considering actual field conditions, it can be concluded that the single-core PBD has enough discharge capacity even in the thick clay deposit such as this test site.

Reinforcement of the Structure Foundation using Grouting(C.G.S) (그라우팅(C.G.S)에 의한 구조물 기초 보강)

  • 천병식;김진춘;권형석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.1-11
    • /
    • 2000
  • The use of Compaction Grouting evolved in 1950's to correct structural settlement of buildings. Over the almost 50 years, the technology has been developed and is currently used in wide range of applications. Compaction Grouting, the injection of a very stiff, 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. Major applications of Compaction Grouting include densifying loose soils or fill voids caused by sinkholes, poorly compacted fills, broken utilities, improper dewatering, or soft ground tunneling excavation. Other applications include preventing liquefation, re-leveling settled structures, and using compaction grout bulbs as structural elements of minipiles or underpinning. In this paper, on the basis of the case history constructed in this year, a study has been performed to analyze the basic mechanism of the Compaction Grouting. Also, the effectiveness of the ground improvement and the bearing capacity of the Compaction Pile has been verified by the Cone Penetration Test(CPT) and Load Test. Relatively uniform Compaction grouting column could be maintained by planning the Quality Control in the course of grouting. And, the Quality Control Plan has been conceived using grout pressure, volume of grout and drilling depth.

  • PDF

The Analysis of the Mechanical Characteristic of Bamboo Net (대나무 망의 역학적 특성분석)

  • Yang, Kee-Sok;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.29-37
    • /
    • 2009
  • Examining the mechanical characteristic of the bamboo net structure is necessary in order to evaluate the influence of bending rigidity of bamboo on bearing capacity, however, there is no equipment to examine such mechanical behavior of the bamboo net structure in the world. In this study, a specific equipment to examine stress-strain behavior characteristics of the structure of bamboo net is developed. In comparison with Bamboo's stress-strain behavior characteristic and vertical stress caused by various dozer equipments, the case of estimating minimum embedded depth considering ground settlement is analyzed.

The Stability Evaluation Methods of Embankment on Soft Clay (연약지반 성토의 안정평가 방법)

  • Kang, Yea Mook;Lee, Dal Won;Kim, Ji Hoon;Kim, Tae Woo;Lim, Seong Hun
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.260-270
    • /
    • 1998
  • The field tests were performed to suggest the rational method for stability evaluation of soft clay. The behavior of settlement-displacement obtained by field monitoring system was to compare and analyze the results of the observationed method, and to investigate the complex behavior of soft clay with filling height. The results of this study are summarized as follows. 1. The horizontal displacement was suddenly increased when physical properties of soft clay showed maximum values and the part of the turning point. The values of these properties were available to the fundamental data for stability evaluation. The shear deformation appeared that difference of the horizontal displacement was maximum values. 2. Although the stability of embankment by step filling showed the unstable part over the failure standard line, the embankment was confirmed stable. So the evaluation of the stability of embankment is reasonable to use the inclination of curve than failure standard line. 3. The horizontal displacement and relative settlement were increased as same ratio at improvement ground. Estimation of shear deformation using Terzaghi's modified bearing capacity should consider the relations of embankment load and undrained shear strength at nonimprovement ground, and minimum safety factor is recommended to use larger than 1.2. 4. Excess pore water pressure was increased with increasing of filling height and decreased with maintain the filling height. The embankment was unstable when filling height was exceed the evaluation standard line, and the behavior of excess pore water pressure and horizontal displacement could use as a standard of judgement of the filling velocity control because their behavior were agree with each other.

  • PDF

The effects of the face reinforcement at shallow tunnels in fractured rock masses (파쇄대 암반에서 얕은 심도의 터널 굴착시 막장보강효과에 관한 연구)

  • Nam, Kee-Chun;Heo, Young;You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.323-336
    • /
    • 2003
  • Recently, the development of tunnel reinforcement method has been required relating to the shallow tunnelling in soft ground. In this study, the improvement method on tunnel stability is proposed by evaluating the efficiency of face reinforcement which enables to control extrusion of advance core, however, it is often neglected in urban tunnelling under the poor ground conditions. Systematic pre-confinement ahead of the face improves the tunnel stability, subsequently, displacement of the crown and surface settlement can be restrained by proper method. 3-dimensional numerical analysis including horizontal reinforcement modelling on a face is applied to estimate the behaviour of a tunnel in relation to the ground and reinforcement conditions. Consequently, extrusion at the face decreases significantly after using the horizontal reinforcement and the effect of reinforcement is much increased in case of applying the supplemental reinforcement ahead of the face together. Especially, confinement effect around the tunnel and the core is proved by means of the core reinforcement in poor ground conditions.

  • PDF

Applicability Study on Deep Mixing for Urban Construction (심층혼합처리 공법의 도심지 공사 적용성 연구)

  • Kim, Young-Seok;Choo, Jin-Hyun;Cho, Yong-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.500-506
    • /
    • 2011
  • The deep mixing method, which is generally considered as a method for improving soft ground, is assessed in terms of its applicability for urban construction. Using small equipment tailored to perform deep mixing in congested urban areas, deep mixing was performed to reinforce the foundation ground of a retaining wall in a redevelopment site in Seoul. Strengths characteristics, construction vibrations and displacements induced to an adjacent old masonry wall were evaluated by laboratory tests and field monitoring. The results indicate that the strength of ground was improved appropriately whilst the vibrations and displacements induced by deep mixing were slight enough to satisfy the general requirements for construction works in urban environments. Therefore, it is concluded that deep mixing method can be a practical option for foundation methods in urban construction works where minimizing noise and vibrations is an important concern.

Improvement in Grade of Sericite Ore by Dry Beneficiation (건식정제에 의한 견운모광의 품위향상연구)

  • Cho, Keon-Joon;Kim, Yun-Jong;Park, Hyun-Hae;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.212-219
    • /
    • 2009
  • A study on the dry beneficiation of sericite occurring in the Daehyun Mine of the Republic of Korea region as performed by applying selective grinding and air classification techniques. Quartz and sericite occurred in the raw ore as major components. The results of liberation using a ball mill and an impact mill showed that the contents of $R_2O$ were increased while $SiO_2$ was decreased in proportion to decreasing particle size. According to the XRD, XRF analysis and the EDS of SEM analysis, the ball mill gave a better grade product in $R_2O$ content than the impact mill when the particle size was the same. When the raw ore was ground by the impact mill with arotor speed 57.6 m/sec and then followed by 15,000rpm classification using an air classifier, the chemical composition of the over flowed product was 49.65wt% $SiO_2$, 32.15wt% $Al_2O_3$, 0.13wt% $Fe_2O_3$, 10.37wt% $K_2O$, and 0.14wt% $Na_2O$. This result indicates that the $R_2O$ contents were increased by 49.5% compared to that of the raw ore. From these results described above, it is suggested that hard mineral such as Quartz little ground by selective grinding using impact mill whereas soft mineral such as sericite easily ground to small size. As a result of that hard minerals can be easily removed from the finely ground sericite by air classification and the $R_2O$ grade of thus obtained concentrate was improved to higher than 10wt% which can be used for ceramics raw materials.