• 제목/요약/키워드: soft deposit

검색결과 92건 처리시간 0.028초

Optimum PVD installation depth for two-way drainage deposit

  • Chai, J.C.;Miura, N.;Kirekawa, T.;Hino, T.
    • Geomechanics and Engineering
    • /
    • 제1권3호
    • /
    • pp.179-191
    • /
    • 2009
  • For a two-way drainage deposit under a surcharge load, it is possible to leave a layer adjacent to the bottom drainage boundary without prefabricated vertical drain (PVD) improvement and achieve approximately the same degree of consolidation as a fully penetrated case. This depth is designated as an optimum PVD installation depth. Further, for a two-way drainage deposit under vacuum pressure, if the PVDs are fully penetrated through the deposit, the vacuum pressure will leak through the bottom drainage boundary. In this case, the PVDs have to be partially penetrated, and there is an optimum installation depth. The equations for calculating these optimum installation depths are presented, and the usefulness of the equations is studied by using finite element analysis as well as laboratory model test results.

연약지반에서 예측 거동과 계측 결과 분석 (Prediction and Measurement of Behaviour of Soft Soil Deposits)

  • 김윤태
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.351-362
    • /
    • 2007
  • Predicted behaviour of a soft clay deposit in design stage is sometimes different from in-situ settlement and pore pressure measured during and after construction. In this paper, characteristics of settlement and pore pressure occurred in soft soil deposits were investigated briefly in order to get a better understanding of time-dependent viscoplastic behaviour and prevent geotechnical problems resulted from long-term settlement, differential settlement, etc.

  • PDF

Free strain analysis of the performance of vertical drains for soft soil improvement

  • Basack, Sudip;Nimbalkar, Sanjay
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.963-975
    • /
    • 2017
  • Improvement of soft clay deposit by preloading with vertical drains is one of the most popular techniques followed worldwide. These drains accelerate the rate of consolidation by shortening the drainage path. Although the analytical and numerical solutions available are mostly based on equal strain hypothesis, the adoption of free strain analysis is more realistic because of the flexible nature of the imposed surcharge loading, especially for the embankment loading used for transport infrastructure. In this paper, a numerical model has been developed based on free strain hypothesis for understanding the behaviour of soft ground improvement by vertical drain with preloading. The unit cell analogy is used and the effect of smear has been incorporated. The model has been validated by comparing with available field test results and thereafter, a hypothetical case study is done using the available field data for soft clay deposit existing in the eastern part of Australia and important conclusions are drawn therefrom.

대형 평판재하시험을 통한 PF 공법의 하중전이 특성 분석 (Evaluation of Bearing Capacity and Load Transfer Characteristics of Point Foundation(PF) Method through the Large Plate Bearing Test)

  • 강민수;조명수;고용택
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.142-143
    • /
    • 2021
  • The general ground conditions in Korea are distributed in order of fill, deposit soil, weathered soil, weathered rock, soft rock. The fill soil and deposit soil located at the top have relatively low strength compared to the lower layer, and they are sometimes classified as soft ground according to the standard penetration test results. In this study, the PF method, a ground improvement method, was applied to the soft layer, a large plate load test was conducted on the improved ground, and the results were reviewed.

  • PDF

Numerical modelling of Haarajoki test embankment on soft clays with and without PVDs

  • Yildiz, Abdulazim;Uysal, Firdevs
    • Geomechanics and Engineering
    • /
    • 제8권5호
    • /
    • pp.707-726
    • /
    • 2015
  • This paper investigates the time dependent behaviour of Haarajoki test embankment on soft structured clay deposit. Half of the embankment is constructed on an area improved with prefabricated vertical drains, while the other half is constructed on the natural deposit without any ground improvement. To analyse the PVD-improved subsoil, axisymmetric vertical drains were converted into equivalent plane strain conditions using three different approaches. The construction and consolidation of the embankment are analysed with the finite element method using a recently developed anisotropic model for time-dependent behaviour of soft clays. The constitutive model, namely ACM-S accounts for combined effects of plastic anisotropy, interparticle bonding and degradation of bonds and creep. For comparison, the problem is also analysed with isotropic Soft Soil Creep and Modified Cam Clay models. The results of the numerical analyses are compared with the field measurements. The results show that neglecting effects of anisotropy, destructuration and creep may lead to inaccurate predictions of soft clay response. Additionally, the numerical results show that the matching methods accurately predict the consolidation behaviour of the embankment on PVD improved soft clays and provide a useful tool for engineering practice.

배수재가 설치된 압축성 지반의 축대칭 비선형 압밀해석 (Azisymmetric Nonlinear Consolidation Analysis for Drainage-Installed Compressible Deposits)

  • 김윤태;이승래
    • 한국지반공학회지:지반
    • /
    • 제12권1호
    • /
    • pp.5-20
    • /
    • 1996
  • 연약지반 처리방법으로 압밀을 촉진시키고, 이로 인한 전단강도를 증진시키기 위하여 선행압밀하중공법과 병행된 배수공법이 널리 사용되어 오고 있다. 본 연구에서는 배수재가 설치된 연약지반의 압밀과정동안에 유발되는 간극비의 감소로 인한 압축성과 투수계수의 변화를 고려할 수 있는 축대칭 비선형 압밀이론을 제안하였다. 제안된 축대칭 비선형 압밀이론을 명백한(explicit) 유한차분법을 적용하여 해석용 프로그램(AXICON)을 개발하였으며 현장지반의 교란효과나 층으로 이루어진 지반을 해석할 수 있도록 보완하였다. 또한 현장지반의 단계적 시공절차를 고려하여 하중을 적용할 수 있도록 하였다. AXICON 해석결과를 기존의 Hansbo와 Barren의 해석적인 해와 비교 검토하였으며 현장지반에서 계측된 침하량과 과잉 간극수압의 자료와 비교하였다.

  • PDF

역해석을 이용한 모래다짐말뚝(SCP)으로 개량된 연약점토지반의 압축지수 결정에 관한 연구 (A Study on a Compression Index for Settlement Analysis of SCP Treated Ground Using Back Analysis)

  • 황성필;임종철;권정근;강연익;주인곤
    • 한국지반환경공학회 논문집
    • /
    • 제11권7호
    • /
    • pp.5-14
    • /
    • 2010
  • 모래다짐말뚝(Sand Compaction Pile, 이하 SCP)으로 개량된 연약점토지반의 침하량 해석시, 근사법을 이용한 해석에서 응력분담비의 불확실성에 의해 발생되는 영향을 줄이고자, 유한요소해석 프로그램을 이용한 수치해석을 수행하였다. 모래다짐말뚝이 타설된 실내 모형압밀실험을 수행하였고, 이를 유한요소 프로그램으로 수치해석을 하였다. 실내실험과 같은 침하량을 도출하기 위해 역해석을 통한 혼합지반의 압축지수($C_c$)를 추정하고, 추세선을 활용하여 설계압축지수를 산정하는 식을 제시하였다. 또한, 이식을 치환율 45%인 현장에 적용하여 현장 적용성을 검증하였다.

점성토 준설매립지반의 자중압밀과 대기건조 영역분리에 의한 표층고결 촉진공법 (Quick Surface Strengthening of Soft Dredged Clay Fill by Dividing the Layer into Self Consolidation and Desiccation)

  • 김현태;김승욱;김상규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.499-506
    • /
    • 2004
  • The use of dredged soft marine clay is increasing due to a shortage of coarse material available. This paper presents a stabilization method that can increase shear strength of the surface layer of a dredged clay deposit at dates much earlier than usual. The desiccation of the upper soft 1-2m layer can be accelerated by interrupting water seeping from its bottom with impervious geotextile. Just below the geotextile, enough pervious material is provided so that the underlying deposit can be drained through it. This scheme is proved to be effective through theoretical analysis.

  • PDF

폐탄매립층의 흙막이공사에서 CGP-앵커 시공사례연구 (Study on CGP-Anchor of Open-Cuts in Abandoned Coal Fill Deposit)

  • 천병식;양형칠
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.416-423
    • /
    • 2001
  • The object of this study is to determine the application of friction and ground stress type CGP(Compaction Grouting Pack)-anchor in retaining wall construction on the soft ground by executing in the fill deposit with abandoned coal. In this study the effect of CGP-anchors as retaining wall anchor on the soft ground anchor was evaluated through measuring displacement according to tensile strength by acting tensile strength after equipping CGP-anchors. From the field tests results, CGP-anchor was determined to be considerably effective as retaining wall anchor on the soft ground by showing that the maximum displacement was 60mm and the elastic displacement was within 50mm by 53ton tensile strength.

  • PDF