• 제목/요약/키워드: soft computing methods

검색결과 40건 처리시간 0.02초

Biologically inspired soft computing methods in structural mechanics and engineering

  • Ghaboussi, Jamshid
    • Structural Engineering and Mechanics
    • /
    • 제11권5호
    • /
    • pp.485-502
    • /
    • 2001
  • Modem soft computing methods, such as neural networks, evolutionary models and fuzzy logic, are mainly inspired by the problem solving strategies the biological systems use in nature. As such, the soft computing methods are fundamentally different from the conventional engineering problem solving methods, which are based on mathematics. In the author's opinion, these fundamental differences are the key to the full understanding of the soft computing methods and in the realization of their full potential in engineering applications. The main theme of this paper is to discuss the fundamental differences between the soft computing methods and the mathematically based conventional methods in engineering problems, and to explore the potential of soft computing methods in new ways of formulating and solving the otherwise intractable engineering problems. Inverse problems are identified as a class of particularly difficult engineering problems, and the special capabilities of the soft computing methods in inverse problems are discussed. Soft computing methods are especially suited for engineering design, which can be considered as a special class of inverse problems. Several examples from the research work of the author and his co-workers are presented and discussed to illustrate the main points raised in this paper.

Soft computing with neural networks for engineering applications: Fundamental issues and adaptive approaches

  • Ghaboussi, Jamshid;Wu, Xiping
    • Structural Engineering and Mechanics
    • /
    • 제6권8호
    • /
    • pp.955-969
    • /
    • 1998
  • Engineering problems are inherently imprecision tolerant. Biologically inspired soft computing methods are emerging as ideal tools for constructing intelligent engineering systems which employ approximate reasoning and exhibit imprecision tolerance. They also offer built-in mechanisms for dealing with uncertainty. The fundamental issues associated with engineering applications of the emerging soft computing methods are discussed, with emphasis on neural networks. A formalism for neural network representation is presented and recent developments on adaptive modeling of neural networks, specifically nested adaptive neural networks for constitutive modeling are discussed.

Applications of Soft Computing Techniques in Response Surface Based Approximate Optimization

  • Lee, Jongsoo;Kim, Seungjin
    • Journal of Mechanical Science and Technology
    • /
    • 제15권8호
    • /
    • pp.1132-1142
    • /
    • 2001
  • The paper describes the construction of global function approximation models for use in design optimization via global search techniques such as genetic algorithms. Two different approximation methods referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the training data is not sufficiently provided or uncertain information may be included in design process. Fuzzy inference system is the central system for of identifying the input/output relationship in both methods. The paper introduces the general procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and presents their generalization capabilities in terms of a number of fuzzy rules and training data with application to a three-bar truss optimization.

  • PDF

Tuning of a PID Controller Using Soft Computing Methodologies Applied to Basis Weight Control in Paper Machine

  • Nagaraj, Balakrishnan;Vijayakumar, Ponnusamy
    • 펄프종이기술
    • /
    • 제43권3호
    • /
    • pp.1-10
    • /
    • 2011
  • Proportional.Integral.Derivative control schemes continue to provide the simplest and effective solutions to most of the control engineering applications today. However PID controller is poorly tuned in practice with most of the tuning done manually which is difficult and time consuming. This research comes up with a soft computing approach involving Genetic Algorithm, Evolutionary Programming, and Particle Swarm Optimization and Ant colony optimization. The proposed algorithm is used to tune the PID parameters and its performance has been compared with the conventional methods like Ziegler Nichols and Lambda method. The results obtained reflect that use of heuristic algorithm based controller improves the performance of process in terms of time domain specifications, set point tracking, and regulatory changes and also provides an optimum stability. This research addresses comparison of tuning of the PID controller using soft computing techniques on Machine Direction of basics weight control in pulp and paper industry. Compared to other conventional PID tuning methods, the result shows that better performance can be achieved with the soft computing based tuning method. The ability of the designed controller, in terms of tracking set point, is also compared and simulation results are shown.

Prediction of fly ash concrete compressive strengths using soft computing techniques

  • Ramachandra, Rajeshwari;Mandal, Sukomal
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.83-94
    • /
    • 2020
  • The use of fly ash in modern-day concrete technology aiming sustainable constructions is on rapid rise. Fly ash, a spinoff from coal calcined thermal power plants with pozzolanic properties is used for cement replacement in concrete. Fly ash concrete is cost effective, which modifies and improves the fresh and hardened properties of concrete and additionally addresses the disposal and storage issues of fly ash. Soft computing techniques have gained attention in the civil engineering field which addresses the drawbacks of classical experimental and computational methods of determining the concrete compressive strength with varying percentages of fly ash. In this study, models based on soft computing techniques employed for the prediction of the compressive strengths of fly ash concrete are collected from literature. They are classified in a categorical way of concrete strengths such as control concrete, high strength concrete, high performance concrete, self-compacting concrete, and other concretes pertaining to the soft computing techniques usage. The performance of models in terms of statistical measures such as mean square error, root mean square error, coefficient of correlation, etc. has shown that soft computing techniques have potential applications for predicting the fly ash concrete compressive strengths.

A structural damage detection approach using train-bridge interaction analysis and soft computing methods

  • He, Xingwen;Kawatani, Mitsuo;Hayashikawa, Toshiro;Kim, Chul-Woo;Catbas, F. Necati;Furuta, Hitoshi
    • Smart Structures and Systems
    • /
    • 제13권5호
    • /
    • pp.869-890
    • /
    • 2014
  • In this study, a damage detection approach using train-induced vibration response of the bridge is proposed, utilizing only direct structural analysis by means of introducing soft computing methods. In this approach, the possible damage patterns of the bridge are assumed according to theoretical and empirical considerations at first. Then, the running train-induced dynamic response of the bridge under a certain damage pattern is calculated employing a developed train-bridge interaction analysis program. When the calculated result is most identical to the recorded response, this damage pattern will be the solution. However, owing to the huge number of possible damage patterns, it is extremely time-consuming to calculate the bridge responses of all the cases and thus difficult to identify the exact solution quickly. Therefore, the soft computing methods are introduced to quickly solve the problem in this approach. The basic concept and process of the proposed approach are presented in this paper, and its feasibility is numerically investigated using two different train models and a simple girder bridge model.

Bond strength prediction of spliced GFRP bars in concrete beams using soft computing methods

  • Shahri, Saeed Farahi;Mousavi, Seyed Roohollah
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.305-317
    • /
    • 2021
  • The bond between the concrete and bar is a main factor affecting the performance of the reinforced concrete (RC) members, and since the steel corrosion reduces the bond strength, studying the bond behavior of concrete and GFRP bars is quite necessary. In this research, a database including 112 concrete beam test specimens reinforced with spliced GFRP bars in the splitting failure mode has been collected and used to estimate the concrete-GFRP bar bond strength. This paper aims to accurately estimate the bond strength of spliced GFRP bars in concrete beams by applying three soft computing models including multivariate adaptive regression spline (MARS), Kriging, and M5 model tree. Since the selection of regularization parameters greatly affects the fitting of MARS, Kriging, and M5 models, the regularization parameters have been so optimized as to maximize the training data convergence coefficient. Three hybrid model coupling soft computing methods and genetic algorithm is proposed to automatically perform the trial and error process for finding appropriate modeling regularization parameters. Results have shown that proposed models have significantly increased the prediction accuracy compared to previous models. The proposed MARS, Kriging, and M5 models have improved the convergence coefficient by about 65, 63 and 49%, respectively, compared to the best previous model.

Assessment of slope stability using multiple regression analysis

  • Marrapu, Balendra M.;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.237-254
    • /
    • 2017
  • Estimation of slope stability is a very important task in geotechnical engineering. However, its estimation using conventional and soft computing methods has several drawbacks. Use of conventional limit equilibrium methods for the evaluation of slope stability is very tedious and time consuming, while the use of soft computing approaches like Artificial Neural Networks and Fuzzy Logic are black box approaches. Multiple Regression (MR) analysis provides an alternative to conventional and soft computing methods, for the evaluation of slope stability. MR models provide a simplified equation, which can be used to calculate critical factor of safety of slopes without adopting any iterative procedure, thereby reducing the time and complexity involved in the evaluation of slope stability. In the present study, a multiple regression model has been developed and tested its accuracy in the estimation of slope stability using real field data. Here, two separate multiple regression models have been developed for dry and wet slopes. Further, the accuracy of these developed models have been compared and validated with respect to conventional limit equilibrium methods in terms of Mean Square Error (MSE) & Coefficient of determination ($R^2$). As the developed MR models here are not based on any region specific data and covers wide range of parametric variations, they can be directly applied to any real slopes.

Predicting the buckling load of smart multilayer columns using soft computing tools

  • Shahbazi, Yaser;Delavari, Ehsan;Chenaghlou, Mohammad Reza
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.81-98
    • /
    • 2014
  • This paper presents the elastic buckling of smart lightweight column structures integrated with a pair of surface piezoelectric layers using artificial intelligence. The finite element modeling of Smart lightweight columns is found using $ANSYS^{(R)}$ software. Then, the first buckling load of the structure is calculated using eigenvalue buckling analysis. To determine the accuracy of the present finite element analysis, a compression study is carried out with literature. Later, parametric studies for length variations, width, and thickness of the elastic core and of the piezoelectric outer layers are performed and the associated buckling load data sets for artificial intelligence are gathered. Finally, the application of soft computing-based methods including artificial neural network (ANN), fuzzy inference system (FIS), and adaptive neuro fuzzy inference system (ANFIS) were carried out. A comparative study is then made between the mentioned soft computing methods and the performance of the models is evaluated using statistic measurements. The comparison of the results reveal that, the ANFIS model with Gaussian membership function provides high accuracy on the prediction of the buckling load in smart lightweight columns, providing better predictions compared to other methods. However, the results obtained from the ANN model using the feed-forward algorithm are also accurate and reliable.

Soft Computing as a Methodology to Risk Engineering

  • Miyamoto Sadaaki
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.3-6
    • /
    • 2006
  • Methods for risk engineering is a bundle of engineering tools including fundamental concepts and approaches of soft computing with application to real issues of risk management. In this talk fundamental concepts and soft computing approaches of risk engineering will be introduced. As the term of risk implies both advantageous and hazardous uncertainty in its origins, a fundamental theory to describe uncertainties is introduced that includes traditional probability and statistical models, fuzzy systems, as well as less popular modal logic. In particular, modal logic capabilities to express various kinds of uncertainties are emphasized and relations with rough sets and evidence theory are described. Another topic is data mining related to problems in risk management. Some risk mining techniques including fuzzy clustering are introduced and a recently developed algorithm is overviewed. A numerical example is shown.

  • PDF