• Title/Summary/Keyword: soft clay soil

Search Result 368, Processing Time 0.026 seconds

Evaluation of Permeability Characteristics of Yangsan Clay using Piezocone Penetration Tests and Laboratory Tests (피에조 콘 시험과 실내시험을 이용한 양산점토의 투수특성 평가)

  • Gu, Namsil;Kim, Youngmin;Park, Jaehwhan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.47-54
    • /
    • 2011
  • Consolidation behavior of soft clay is generally to be affected by its compressibility and deformation characteristics. Especially, soil permeability depends on soil characteristics including its type of anisotropy. Coefficient of permeability of soft clay is mostly estimated by using laboratory(Oedometer test) and in-stiu piezocone test. The permeability characteristics of soft clay is estimated by excess pore pressure dissipation test results. In this study, the tests were performed to find out the validity of the existing theoretical formula in clay by pore pressure dissipation test and laboratory test results. After grasping of variation the coefficient of permeability ratio(${k_{h}/k_{v}}$) in different clay soils, it was found out adequate solution of in-stiu permeability ratio(${k_{h}/k_{v}}$). Piezocone tests and laboratory tests were performed at the site of pilot project of ground improvement at Yangsan-Mulgeum, Gyeongsangnam-do. Comparisons of the estimated values of ${k_{h}/k_{v}}$ using piezocone tests results and those from laboratory consolidation tests were carried out. Test results show that values of ${k_{h}/k_{v}}$ by piezocone test result(5.85) is similar of it's laboratory test(5.28).

A Study on the Shear Charactersitics for Synthetics Fiber Reinformcements Soils (섬유보강토의 전단특성에 관한 연구)

  • 송창섭;임성윤;이용범
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.582-587
    • /
    • 1999
  • This study has been done to investigate the characteristics of synthetic fiber reinforcement sol with fully satruated . To this end, consolidated undrained triaxial test was performed on synthetic fiber reinforcement soil using the soft clay and plypropylene fiber . From the results of test, it was formed that the mixing ratio for weight and the aspect ratio of synthetic fiber have an effect on the shear characteristic of synthetic fiber rinforcement soil. Especially shear paramter C has line relationship for mixing ratio of fiber, and øhas parabolic relationship for mixing ratio of fiber.

  • PDF

Case Analysis of Abutment Displacement and Pavement settlement (교대변위 및 도로침하에 대한 사례분석)

  • 박찬호;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.03a
    • /
    • pp.19-30
    • /
    • 1994
  • This paper reports a case study of aboutment displacement and pavement settlement observed at the construction site for highway bridges. The emphasis was on quantifying the horizontal deflections of about and pavement settlement on the backfill surface. It is shown that in soft clay, bridge aboutments on pile foundations are subjected to lateral earth pressures due to lateral soil movement. Based on the results analyzed, the earth pressure was predicted by deflection shape of piles based on the results of a numerical analysis and an analytical study. Also, the long term settlement of soil below pavement was estimated.

  • PDF

Analysis of Compressive Strength of Lightweight Air-mixed Soil According to the Properties of Soil (원료토의 특성에 따른 경량기포혼합토의 압축강도 영향인자 분석)

  • Song, Jun-Ho;Im, Jong-Chul;Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.157-166
    • /
    • 2008
  • To investigate the relationship between compressive strength ($q_u$) of Lightweight Air-mixed soil (LAS) and its physical deformation coefficient ($E_{50}$), a series of unconfined compressive tests have been performed on specimens of LAS according to various dredged soil types by percentage of sand, silt and clay. From the results it was found that the cement content ($C_i$) and unit weight (${\gamma}_m$) are most influence factors on strength, and percentage of sand, silt, clay by grain size analysis (KS F2302) have more effect on compressive strength than other physical properties of soil. It was also found that the rate of strength (a) increases with curing time, but it reduces with the increase of percentage of clay ($C_%$).

Stress waves transmission from railway track over geogrid reinforced ballast underlain by clay

  • Fattah, Mohammed Y.;Mahmood, Mahmood R.;Aswad, Mohammed F.
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.1-27
    • /
    • 2022
  • Extensive laboratory tests were conducted to investigate the effect of load amplitude, geogrid position, and number of geogrid layers, thickness of ballast layer and clay stiffness on behavior of reinforced ballast layer and induced strains in geogrid. A half full-scale railway was constructed for carrying out the tests, the model consists of two rails 800 mm in length with three wooden sleepers (900 mm × 10 mm × 10 mm). The ballast was overlying 500 mm thickness clay in two states, soft and stiff state. Laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid. Settlement in ballast and clay, soil pressure and pore water pressure induced in the clay were measured in reinforced and unreinforced ballast cases. It was concluded that the effect of frequency on the settlement ratio is almost constant after 500 cycles. This is due to that the total settlement after 500 cycles, almost reached its peak value, which means that the ballast particles become very close to each other, so the frequency is less effective for high contact particles forces. The average maximum vertical stress and pore water pressure increased with frequency.

Characteristics of Bearing Capacity of Soft Ground Reinforced by Vertical Mat (연직 매트로 보강된 연약지반의 지지력 특성)

  • Shin, Eun-Chul;Lee, Gil-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.83-90
    • /
    • 2012
  • Generally, the effect of the cement deep mixing method on the improvement of clay ground is far greater than the effect of physical improvement. Although it leads to great improvement strength in the initial stage, there are not many constructional precedents in Korea and it is hard to manage quality according to the cement-clay mixing method. In order to figure out the strength characteristics according to the mixing ratio of cement, sand, and clay and the improvement characteristics of weak ground according to the forms of the specimens to be improved, marine clay was used in this study to conduct the uniaxial compression test and soil bin model test. The test piece specimens for the uniaxial compression test were mixed with sand in a fixed ratio with the criterion of the water cement ratio. The cement was mixed with clay in the ratios of 10%, 20%, 30%, and 40% to the clay weight. The moisture content of the soil ground was made in the ratios of 40%, 60%, and 80%. The test piece specimens went through curing by moistening for 7, 14, and 28 days and underwent the uniaxial compression test according to the curing period. For the bearing test, the soil bin models were made and the ground improved in the Mat type was formed. After that, the bearing strength was compared in this study according to the improvement ratio and analyzed the intervening effect between the walls of the improved specimens.

A Study on the Design-parameter of Mixed Ground by Using Cement-type Stabilizer (시멘트계 고화재에 의해 혼합처리된 지반의 설계정수에 관한 연구)

  • 천병식;임해식;전진규
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.79-89
    • /
    • 2000
  • The application of stabilization method has increased because of short construction periods, no environmental problems with dumped and replaced soil, assurance of required strength and economical effect with mid to small size construction. The unconfined and triaxial(UU-condition) compression tests were executed with each mixing sample for the study of the improvement effects and the effect of design-parameters by the stabilization methods. Three typical stabilizers, which are representative in Korea, were applied in this study, and three common soils(very soft clay, general weathered soil, common clay), which are common in Korea, were used in this study. In this study, the effect of engineering factors(soils, stabilizers and water contents, etc.) which are important parameters for the improvement effects of mixed ground by stabilizers, was analyzed. As results, the tendencies of design-parameters(unconfined compression strength, deformation modulus and strength parameter) are presented and the criteria of the application of stabilization methods are suggested.

  • PDF

Experimental study on characteristics of sedimentation and consolidation for dredged clay in the west coastal of Korea (국내 서해안 준설토의 침강압밀특성에 관한 실험 연구)

  • Jun, Sang-Hyun;Yoo, Nam-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1190-1197
    • /
    • 2009
  • Design parameters related to Yano's method(1984, 1985), one of experimental approaches having been used widely in Korea to estimate sedimentation and consolidation of dredged and reclaimed ground, were analyzed and their propriety were reassessed in this paper. Data analyses were performed on the basis of the settling test results using samples from the west coastal area of Korea. From analysis of results, for specific characteristics of these dredged and reclaimed marine soft clays, co-relations of initial water content - coefficient of sedimentation/ consolidation - initial setting velocity were evaluated. Relation between height of soil solid and surface height of slurry at the stages of initiation and termination of consolidation was also assessed. Finally ranges and average values of these design parameters were evaluated and typical empirical equations between these design parameters were also proposed.

  • PDF

Numerical Analysis an나bout Effects of Smear Zone in Vertical Drains on Consolidation (연직배수공법의 스미어존이 압밀에 미치는 영향에 관한 수치해석)

  • Yoo, Nam-Jae;Hong, Young-Kil;Woo, Young-Min;Jun, Sang-Hyun
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.127-134
    • /
    • 2009
  • In this paper, an numerical approach is performed to investigate the effects of smear zone, occurred by penetrating vertical drains, on consolidation behavior of soft clay deposits. Such a numerical analysis is applied to the field condition to confirm its applicability. Parametric numerical analyses is carried out to study influencing factors such as permeability in smear zone, boundary of smear zone and discharge capacity of vertical drains on the consolidation of soil. As results of analyses, for the given conditions of soil, degree of consolidation is getting faster with increase of permeability of vertical drain. Degree of consolidation is delayed with decrease of permeability of smear zone. As the ratio of drain width to smear zone increases, the degree of consolidation decreases. Proposed values of influencing factors by previous researchers is found to be reliable from results of numerical analyses with Cam-clay model.

  • PDF

Evaluation of Strength Incremental Ratio of Korean Marine Clayey Soil (국내 해성 점성토의 강도증가율 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.31-39
    • /
    • 2017
  • Applicability of Skempton's and Hansbo's equation for estimating strength incremental ratio of Korean marine clayey soil was analyzed. These empirical equations have been commonly applied to design soft ground improvement by, especially, staged loading method. Strength incremental ratios proposed by Skempton (1954, 1957) and Hansbo (1957) using field vane tests(FVTs), measured in Scandinavia depends on plasticity index and liquid limit. Although lean clay in Scandinavia can be classified as clay based on USCS, this soil contains no clay mineral because it was produced by the glacial grinding of rock, sometimes, called rock flour. On the contrary, plasticity indices of Korean marine clayey soils increase linearly with the percentage of clay fraction (% finer than $2{\mu}m$ by weight). Except for strength incremental ratios using $q_u/2$ values in the case of soils having a low plasticity, such as Incheon, Hwaseong and Gunsan soils, these values are in the range of 0.25 to 0.35, independently of the plasticity index, $I_p$.