• Title/Summary/Keyword: sodium sulfate attack

Search Result 33, Processing Time 0.019 seconds

Experimental Approach on Sulfate Attack Mechanism of Ordinary Portland Cement Matrix: Part I. Sodium Sulfate Attack

  • Moon Han-Young;Lee Seung-Tae;Kim Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.557-564
    • /
    • 2004
  • This paper introduces a study carried out to investigate sodium sulfate attack caused by various reactive products. Experiments were performed on mortar and paste specimens made with ordinary Portland cement (OPC) conforming to KS L 5201 Type I. The water-cement ratios were varied from 0.35 to 0.55. It was found from the laboratory study that the water-cement ratio may be a key to control the deterioration of OPC matrix during sodium sulfate attack. Furthermore, X-ray diffraction (XRD) confirmed that ettringite, gypsum and thaumasite were the main products formed by sodium sulfate attack. These findings were well supported by thermal analysis through differential scanning calorimetry (DSC), and confirmed the long-term understanding that deterioration mechanism by sodium sulfate attack is a complicated process. Most importantly, deterioration due to sodium sulfate attack is characterized as the drastic reduction in compressive strength as well as the expansion (especially in cement matrix with a higher water-cement ratio).

Selection of Portland Cement for Prevention of Sulfate Attack-Part 1 Sodium Sulfate Attack (황산염침식 방지를 위한 포틀랜드시멘트의 선정-Part 1 황산나트륨 침식)

  • Kim, Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.441-447
    • /
    • 2009
  • This paper presents a detailed experimental study on the sulfate resistance of specimens made with portland cement exposed to sulfate attack. The mortar specimens were immersed in a 5% sodium sulfate solution for 360 days and regularly monitored for visual damage, compressive strength loss and expansion. In addition, at the end of 360 days, the products of sulfate attack and the mechanism of attack were investigated through X-ray diffraction, TG&DSC and scanning electron microscopy. The test results indicated that the sulfate deterioration data was ordinary portland cement > sulfate resistance portland cement > low heat portland cement. The microstructural studies indicated that the main reaction product of deterioration of the mortar specimens was the formation of ettringite, gypsum and thaumasite due to sulfate attack. For portland cement matrices, a low heat cement matrix containing the lowest C3A and silicate ratio (C/S) was beneficient against the sulfate attack.

Sulfate Attack and the Role of Cement Compositions

  • Lee, Seung-Tae;Lee, Seung-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.465-470
    • /
    • 2007
  • This paper presents an experimental study of the sulfate resistance of mortars and pastes exposed to sodium sulfate solutions up to one year. In order to check deterioration modes due to sulfate attack, the sodium sulfate solution was varied at three concentration steps (3,380, 10,140 and 33,800 ppm of $SO_4^{2-}$ ions), and maintained at ambient temperature. The tests include a visual examination, expansion and compressive strength loss measurements as well as x-ray diffraction tests. The experimental data indicated that the use of cement with a low $C_3A$ content and low silicate ratio has a beneficial effect on the sulfate attack of mortars. In contrast, the mortars with a high $C_3A$ content and high silicate ratio became severely degraded due to the formation of ettringite, gypsum and/or thaumasite in the cement matrix.

Modeling of time-varying stress in concrete under axial loading and sulfate attack

  • Yin, Guang-Ji;Zuo, Xiao-Bao;Tang, Yu-Juan;Ayinde, Olawale;Ding, Dong-Nan
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.143-152
    • /
    • 2017
  • This paper has numerically investigated the changes of loading-induced stress in concrete with the corrosion time in the sulfate-containing environment. Firstly, based on Fick's law and reaction kinetics, a diffusion-reaction equation of sulfate ion in concrete is proposed, and it is numerically solved to obtain the spatial and temporal distribution of sulfate ion concentration in concrete by the finite difference method. Secondly, by fitting the existed experimental data of concrete in sodium sulfate solutions, the chemical damage of concrete associated with sulfate ion concentration and corrosion time is quantitatively presented. Thirdly, depending on the plastic-damage mechanics, while considering the influence of sulfate attack on concrete properties, a simplified chemo-mechanical damage model, with stress-based plasticity and strain-driven damage, for concrete under axial loading and sulfate attack is determined by introducing the chemical damage degree. Finally, an axially compressed concrete prism immersed into the sodium sulfate solution is regarded as an object to investigate the time-varying stress in concrete subjected to the couplings of axial loading and sulfate attack.

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.

Resistance against Chloride Ion and Sulfate Attack of Cementless Concrete (무시멘트 콘크리트의 염소이온 침투 및 황산염 침투 저항성)

  • Lee, Hyun-Jin;Bae, Su-Ho;Kwon, Soon-Oh;Lee, Kwang-Myong;Jeon, Jun-Tai
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.63-69
    • /
    • 2015
  • It has been well known that concrete structures exposed to chloride and sulfate attack environments lead to significant deterioration in their durability due to chloride ion and sulfate ion attack. The purpose of this experimental research is to evaluate the resistance against chloride ion and sulfate attack of the cementless concrete replacing the cement with ground granulated blast furnace slag. For this purpose, the cementless concrete specimens were made for water-binder ratios of 40%, 45%, and 50%, respectively and then this specimens were cured in the water of $20{\pm}3^{\circ}C$ and immersed in fresh water, 10% sodium sulfate solution for 28 and 91 days, respectively. To evaluate the resistance to chloride ion and sulfate attack for the cementless concrete specimens, the diffusion coefficient for chloride ion and compressive strength ratio, mass change ratio, and length change ratio were measured according to the NT BUILD 492 and JSTM C 7401, respectively. It was observed from the test results that the resistance against chloride ion and sulfate attack of the cemetntless concrete were comparatively largely increased than those of OPC concrete with decreasing water-binder ratio.

Influence of SO42- Ions Concentration on Sulfate Resistance of Cement Mortars (시멘트 모르타르의 황산염침식 저항성에 대한 SO42- 이온 농도의 영향)

  • Lee, Seung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.757-764
    • /
    • 2008
  • This paper was conducted to evaluate the durability of cement mortars exposed to varying concentrations of sodium sulfate for up to 540 days. Three types of cement mortars, namely OPC, SRC and SGC, were exposed to four sodium sulfate solutions with concentrations of 4225, 8450, 16900 and 33800 ppm of ${SO_4}^{2-}$ ions at ambient temperature. The sulfate deterioration was evaluated by measuring compressive strength and linear expansion of mortar specimens. Experimental results indicated that the maximum deterioration was noted in OPC mortar specimens in highly concentrated sulfate solution. In particular, the $C_3A$ content in cements plays a critical role in resisting expansion due to sodium sulfate attack. Additionally, the beneficial effect of GGBS was clearly observed showing a superior resistance against sodium sulfate attack, because of its lower permeability. Another important observation was that the parameters for the evaluation of deterioration degree are greatly dependent on the products formed by sulfate attack.

Influence of Mineral Admixtures on the Resistance to Sulfuric Acid and Sulfate Attack in Concrete (콘크리트의 황산 및 황산염 침투 저항성에 미치는 광물질 혼화재의 영향)

  • Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.219-228
    • /
    • 2010
  • It has been well known that concrete structures exposed to acid and sulfate environments such as sewer, sewage and wastewater, soil, groundwater, and seawater etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to concrete matrix by forming expansive hydration products due to the reaction between portland cement hydration products and acid and sulfate ions. Objectives of this experimental research are to investigate the effect of mineral admixtures on the resistance to acid and sulfate attack in concrete and to suggest high-resistance concrete mix against acid and sulfate attack. For this purpose, concretes specimens with three types of cement (ordinary portland cement (OPC), binary blended cement (BBC), and ternary blended cement (TBC) composed of different types and proportions of admixtures) were prepared at water-biner ratios of 32% and 43%. The concrete specimens were immersed in fresh water, 5% sulfuric acid, 10% sodium sulfate, and 10% magnesium sulfate solutions for 28, 56, 91, 182, and 365 days, respectively. To evaluate the resistance to acid and sulfate for concrete specimens, visual appearance changes were observed and compressive strength ratios and mass change ratios were measured. It was observed from the test results that the resistance against sulfuric acid and sodium sulfate solutions of the concretes containing mineral admixtures were much better than that of OPC concrete, but in the case of magnesium sulfate solution the concretes containing mineral admixtures was less resistant than OPC concrete due to formation of magnesium silicate hydrate (M-S-H) which is non-cementitious.

A Study on the Application of Recycled Fine Aggregate under Sulfate Environment

  • Lee, Seung-Tae
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.17-22
    • /
    • 2007
  • The report of an investigation into the performance of mortar specimens made with recycled fine aggregate (RA) exposed to sodium sulfate solution for 360 days is presented in this paper. Mechanical properties of mortar specimens such as visual examination, compressive strength, expansion and mass loss were periodically monitored. From the test results, it was found that mortar specimens with higher replacement levels of Rh exhibited poor performance in sodium sulfate solution. However, compared to mortar specimens without RA, those with lower replacement levels of RA (up to 50% by mass) was more resistant to sulfate attack. Through the x-ray diffraction analysis, it was confirmed that the main products causing sulfate deterioration in RA mortar specimens were the formation of gypsum and thaumasite.

Sulfate Attack on the Cation Type Accompanying $SO_4^{2-}$ (황산이온과 결합하는 양이온의 종류에 따른 황산염침식)

  • Moon, Han-Young;Kim, Seong-Soo;Jung, Ho-Seop;Lee, Seung-Tae;Kim, Jong-Pil;Koh, Joon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.221-224
    • /
    • 2006
  • This paper reports a study carried out to investigate sulfate attack caused by cation type(sodium, magnesium) accompanying $SO_4^{2-}$ ions in sulfate solutions. The sulfate attack of mortar specimens was evaluate using the visual appearance, compressive strength loss and expansion. In addition, at the end of 360 days, the products of sulfate attack and the mechanism of attack were investigated through x-ray diffraction.

  • PDF