• 제목/요약/키워드: sodium reduction technologies

검색결과 12건 처리시간 0.019초

국내외 나트륨 저감 기술 동향 (Domestic and International Trends in Technologies for Sodium Reduction)

  • 정광호
    • 식품과학과 산업
    • /
    • 제49권2호
    • /
    • pp.18-24
    • /
    • 2016
  • Sodium chloride (NaCl) is a very important as one of major food ingredients in food industries. Recently, as the potential risk of adult diseases such as hypertension by overingestion of sodium, health authorities of many countries are executing policies for the reduction of sodium to suppress the overingestion of sodium by intake of NaCl. As general ways, the replacement of NaCl with either alternative salts, such as solar salts and minerals, for examples calcium, magnesium, potassium, lactic acid, and so on, and the addition of flavor enhancers were used to reduce the contents of sodium in foods. Recently, controls of particle size of sodium chloride or release point are emerging as new salt-manufacturing technologies for the sodium reduction. Upon reducing NaCl in foods it is important to develop practically adaptable technologies on the basis of the consideration of the unique functions of NaCl in foods, in particular effects on rheological characters, function as a humectant, shorten shelf life time, and so on.

전통발효식품의 나트륨 저감화 (Sodium Reduction in Traditional Fermented Foods)

  • 박현주;이미영;윤은경;정하열
    • 식품과학과 산업
    • /
    • 제49권2호
    • /
    • pp.34-44
    • /
    • 2016
  • Given that fermented foods, such as kimchi and doenjang, are main food sources for high sodium intake in Korea, there have been needs to develop sodium-reduced kimchi and doenjang with the proper quality. However, small and medium sized business could not actively develop the sodium-reduced products due to lack of techniques and information as well as economical reasons. The most important aspects is to address food safety issues including microbial contaminations in sodium-reduced foods. Hurdle Technology, physical, biological, chemical control technique, would have to be preferentially considered to increase the hygiene safety standards in entire processing steps including raw materials, process water, manufacturing environments, and so on. Once the food hygiene level is stable, the next challenges are to improve the taste of the sodium reduced-products as well as to packaging and storage technologies. The development of a variety of sodium-reduced fermented foods would result in significant mitigation of sodium intake by Korean. This report provides the directions to develop sodium-reduced kimchi, doenjang or pickled food products for small and medium sized business, based on the technical consulting results of sodium reduction project supported by Ministry of Food and Drug Safety in 2015.

Effect of reducing sodium chloride based on the sensory properties of meat products and the improvement strategies employed: a review

  • Kim, Tae-Kyung;Yong, Hae In;Jung, Samooel;Kim, Hyun-Wook;Choi, Yun-Sang
    • Journal of Animal Science and Technology
    • /
    • 제63권4호
    • /
    • pp.725-739
    • /
    • 2021
  • Many consumers are concerned about the high levels of salt intake owing to the accompanied risk of chronic diseases. Due to this dietary concern, the food industry has recommended the reduction of salt content in many products. However, the addition of salt to meat products improves their quality and sensory properties, including saltiness, color, juiciness, and texture. Because quality deteriorations could induce decreased sensory scores owing to salt reductions, the challenges involved in improving the quality of reduced-salt meat products have been addressed. During the development of low-salt meat products, it is important to reduce sodium content and address the problems that arise with this reduction. Modified salt, organic acids, amino acids, nucleotides, hydrocolloids, high-pressure, ultrasound, electric pulsed field, and irradiation have been suggested as strategies to replace or reduce sodium content, and sensory scores could be improved by these strategies. Therefore, when developing a low-salt meat product, several perspectives must be considered and the latest technologies that could resolve this problem should be adopted.

포스트 리튬 이차전지 기술 동향 (Technology Trends in Post-Lithium Secondary Batteries)

  • 최윤호;정형석
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.128-136
    • /
    • 2023
  • Lithium accounts for only 0.0017% of the earth crust, and it is produced in geographically limited regions such as South America, the United States, and China. Since the first half of 2017, the price of lithium has been continuously increasing, and with the rapid adoption of electric vehicles, lithium resources are expected to be depleted in the near future. In addition, economic blocs worldwide face intensifying scenarios such as competition for technological supremacy and protectionism of domestic industries. Consequently, Korea is deepening its dependence on China for core materials and is vulnerable to the influence of the United States Inflation Reduction Act. We analyze post-lithium secondary battery technologies that rely on more earth-abundant elements to replace lithium, whose production is limited to specific regions. Specifically, we focus on the technological status and issues of sodium-ion, zinc-air, and redox-flow batteries. In addition, research trends in post-lithium secondary batteries are examined. Post-lithium secondary batteries seem promising for large-capacity energy storage systems while reducing the costs of raw materials compared with existing lithium-based technologies.

ADVANCED SFR DESIGN CONCEPTS AND R&D ACTIVITIES

  • Hahn, Do-Hee;Chang, Jin-Wook;Kim, Young-In;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Ha, Kwi-Seok;Kim, Byung-Ho;Lee, Yong-Bum
    • Nuclear Engineering and Technology
    • /
    • 제41권4호
    • /
    • pp.427-446
    • /
    • 2009
  • In order to meet the increasing demand for electricity, Korea has to rely on nuclear energy due to its poor natural resources. In order for nuclear energy to be expanded in its utilization, issues with uranium supply and waste management issues have to be addressed. Fast reactor system is one of the most promising options for electricity generation with its efficient utilization of uranium resources and reduction of radioactive waste, thus contributing to sustainable development. The Korea Atomic Energy Research Institute (KAERI) has been performing R&Ds on Sodium-cooled Fast Reactors (SFRs) under the national nuclear R&D program. Based on the experiences gained from the development of KALIMER conceptual designs of a pool-type U-TRU-10%Zr metal fuel loaded reactor, KAERI is currently developing Advanced SFR design concepts that can better meet the Generation IV technology goals. This also includes developing, Advanced SFR technologies necessary for its commercialization and basic key technologies, aiming at the conceptual design of an Advanced SFR by 2011. KAERI is making R&D efforts to develop advanced design concepts including a passive decay heat removal system and a supercritical $CO_2$ Brayton cycle energy conversion system, as well as developing design methodologies, computational tools, and sodium technology. The long-term Advanced SFR development plan will be carried out toward the construction of an Advanced SFR demonstration plant by 2028.

Emerging Innovations to Reduce the Salt Content in Cheese; Effects of Salt on Flavor, Texture, and Shelf Life of Cheese; and Current Salt Usage: A Review

  • Bae, Inhyu;Park, Jong-Hyun;Choi, Hee-Young;Jung, Hoo-Kil
    • 한국축산식품학회지
    • /
    • 제37권6호
    • /
    • pp.793-798
    • /
    • 2017
  • Salt is an essential ingredient for cheese production, and it influences various aspects of cheese, including the shelf life, enzyme activity, flavor, casein hydration, and microbial proliferation during ripening. Several consumers avoid cheese with high salt content, mainly due to health problems such as hypertension, cardiovascular disease (CVD), stroke, and heart attacks. Salt has been commonly used for several purposes in cheese production, including for obtaining the required flavor and texture, for its preservative properties, and as a taste enhancer. However, salt usage has been opposed by the public and governmental bodies, who have been advised by health authorities that salt should be reduced or avoided in cheese for healthier life. However, salt replacement or reduction in cheese manufacturing requires formulation of intensive strategies. This review provides information about several strategies and innovations for reduction and replacement of salt in cheese manufacturing without seriously affecting the quality, microbial safety, and sensory properties of cheeses.

CuO/3Al$_2$O$_3$ㆍ2SiO$_2$, 촉매담지 세라믹 캔들필터를 이용한 먼지/NOx/SOx/HCl 제거기술

  • 문수호;홍민선;이재춘;이동섭
    • 에너지공학
    • /
    • 제13권2호
    • /
    • pp.133-143
    • /
    • 2004
  • Simultaneous removal technology of particulate/NOx/SOx/HCl using CuO/3Al$_2$O$_3$ㆍ2SiO$_2$catalyst impregnated ceramic candle filters is an advanced air pollution process and provides significantly to reduce hazardous gases emitted from coal-fired power plant. This process uses a high-temperature catalytic filter for integrating SOx and HCl reduction through injection an alkali sorbent (such as hydrated lime or sodium bicarbonate), NOx removal through ammonia injection and selective catalytic reduction (SCR), and particulate collection on the catalytic filter surface. The advantages of the process include : compact integration of the emission control technologies into a single component; easy handling of dry sorbent and by-product; and improved SCR catalytic life due to lowered SOx, HCl and particulate levels. CuO/3Al$_2$O$_3$ㆍ2SiO$_2$ catalyst impregnated ceramic candle filters showed a possibility of simultaneous treatment from results which have ascertained high removal efficiency at various combined gases conditions, and in pilot plant test for 3 months, NO conversion was showed 90% over.

Effects of NaCl Replacement with Gamma-Aminobutyric acid (GABA) on the Quality Characteristics and Sensorial Properties of Model Meat Products

  • Chun, Ji-Yeon;Kim, Byeongsoo;Lee, Jung Gyu;Cho, Hyung-Yong;Min, Sang-Gi;Choi, Mi-Jung
    • 한국축산식품학회지
    • /
    • 제34권4호
    • /
    • pp.552-557
    • /
    • 2014
  • This study investigated the effects of ${\gamma}$-aminobutylic acid (GABA) on the quality and sensorial properties of both the GABA/NaCl complex and model meat products. GABA/NaCl complex was prepared by spray-drying, and the surface dimensions, morphology, rheology, and saltiness were characterized. For model meat products, pork patties were prepared by replacing NaCl with GABA. For characteristics of the complex, increasing GABA concentration increased the surface dimensions of the complex. However, GABA did not affect the rheological properties of solutions containing the complex. The addition of 2% GABA exhibited significantly higher saltiness than the control (no GABA treatment). In the case of pork patties, sensory testing indicated that the addition of GABA decreased the saltiness intensity. Both the intensity of juiciness and tenderness of patties containing GABA also scored lower than the control, based on the NaCl reduction. These results were consistent with the quality characteristics (cooking loss and texture profile analysis). Nevertheless, overall acceptability of the pork patties showed that up to 1.5%, patties containing GABA did not significantly differ from the control. Consequently, the results indicated that GABA has a potential application in meat products, but also manifested a deterioration of quality by the NaCl reduction, which warrants further exploration.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • 제39권3호
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

Characterization of NAD-Dependent Formate Dehydrogenase from Trametes versicolor Using a Cell-Free Protein Expression System

  • LEE, Su-Yeon;JANG, Seokyoon;LEE, Soo-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권3호
    • /
    • pp.159-166
    • /
    • 2022
  • CO2 emissions are the primary reason for global warming; hence, biological and chemical technologies for converting CO2 into useful compounds are being actively studied. Biological methods using enzymes can convert CO2 under mild conditions. Formate dehydrogenase (FDH) is a representative CO2 conversion enzyme. Its function was revealed after isolation from bacteria, yeast, and plants. In this study, we evaluated the CO2 conversion potential of FDH isolated from wood-rotting fungi. After isolating the FDH gene (TvFDH) from Trametes versicolor, we cloned the full-length FDH from T. versicolor and expressed it in a cell-free expression system. The gene encoding TvFDH was identified as 1,200 bp open reading frame (ORF) and the expected molecular weight of the protein was approximately 42 kDa. Overexpression of the recombinant crude protein including TvFDH was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Enzyme activities and metabolite analyses confirmed the efficiency of TvFDH for CO2 reduction.