• Title/Summary/Keyword: sodium hydroxide[NaOH]

Search Result 229, Processing Time 0.024 seconds

Remediation of Contaminated Soil with Heavy Metal Using Low Molecular Weight Organic Acids (저분자 유기산에 의한 중금속 오염토양의 복원)

  • Jeong, Euh-Deok;Won, Mi-Sook;Yoon, Jang-Hee;Lee, Byung-Ho;Paek, U-Hyon;Joseph A. Gardella, Jr
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.299-304
    • /
    • 2001
  • For the remediation of the contaminated soil with heavy metals, Cd, Cr, Cu, and Pb, the reaction parameters were optimized. Tartaric acid (TA) and oxalic acid(OA) as a washing agent and recovery of metals, The optimum washing conditions of TA and OA were in the ratio of 1 : 20 between soil and acid solution during 2hr reaction under unbuffered pH solutions. At the optimized reaction conditions, the removal efficiencies were compared with that of 0.1 M HCl and ethylenediamine tetraacetic acid(EDTA). TA showed higher efficiency on the removal of Pb than that of EDTA, which established for the remediation of contaminated soil with Pb and Cd metals. The recovery of metal ions from washing solution was achieved by adding calcium hydroxide and sodium sulfide by forming the precipitation of metal hydroxide and metal slfied. Optimum amounts of sodium sulgide and calcium hydroxide were Cd = 25g/$\ell$, Cu = 5~10g/$\ell$ and Pb = 5~10g/$\ell$ for the washing solution of OA and 2~5g/$\ell$ for the washing solution of TA, respectively. The amounts of $Na_2S$ and $CA(OH)_2$ for the tartaric acid was less than that of oxalic acid.

  • PDF

Characteristics of Recycled Fine Aggregate by Sodium Carbonated Water (탄산나트륨을 이용하여 제조한 순환잔골재의 품질 특성)

  • Hong, Sung-Rog;Kim, Ha-Seog;Kwak, Eun-Gu;Park, Sun-Gyu;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • Amount of disposed construction materials like waste concrete is growing fast and use of the recycled aggregate for concrete has been seriously considered. But the use of the recycled aggregate is very limited because recycled aggregate has very low quality. Therefore, quality of recycled aggregate is very important in the manufacturing of recycled aggregate concrete. We have studied a series of research according to chemical processes and investigate the alkaline elimination effect of recycled aggregate and quality variation of recycled aggregate by sodium carbonate. Thereafter we have evaluated quality of recycled fine aggregate and experimented quality of this aggregate. As a results, we find that it is easy to eliminate the calcium hydroxide in recycled aggregate by sodium carbonate and the quality of recycled aggregate increase by elimination of alkaline.

  • PDF

Synthesis of Surface Crosslinked Poly(sodium acrylate) for Delayed Absorption in Cement Solution (시멘트 수용액에서 흡수 지연을 위한 Crosslinked Poly(sodium acrylate)의 표면 가교)

  • Hwang, Ki-Seob;Jang, Seok-Soo;Jung, Yong-Wook;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.363-369
    • /
    • 2011
  • To study the effect of incorporation of a surface crosslinking layer on a crosslinked poly (sodium acrylate) (cPSA) absorbent with ethylene glycol dimethacrylate CEGDMA), we synthesized several surface crosslinked cPSAs with EGDMA by an inverse emulsion polymerization method to delay the absorption of excess water in concrete, Liquid paraffin was used as a continuous phase. cPSA was synthesized with acrylic acid (AA) neutralized with aqueous 8 M sodium hydroxide solution as a monomer, N,N-methylene bisacrylamide (MBA) as crosslinking agent and ammonium persulfate (APS) and sodium metabisulfite (SMBS) as a redox initiator system by inverse emulsion polymerization. FTIR spectroscopy was used to characterize $Ca^{2+}$ ion interaction with cPSA and cPSA-EGDMAs. The swelling ratios of synthesized absorbents were evaluated from the absorption in deionized water, cement saturated aqueous solution and aqueous solution of calcium hydroxide (pH 12). Equilibrium swelling times for cPSA and surface crosslinked cPSA with EGDMA were 2 and 3 hrs, respectively. We also observed an increase in setting time of the cement and an increase in the compressive strength of mortar by addition of the synthesized cPSA-EGDMA.

Inverse Emulsion Polymerization of Water Absorbent Polymer for Strength Enhancement of Mortars (모르타르 강도 증진을 위한 고분자 흡수제의 역유화 중합)

  • Hwang, Ki-Seob;Jung, Myoung-Geun;Jang, Seok-Soo;Jung, Yong-Wook;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.434-441
    • /
    • 2010
  • Sodium polyacrylate (PAANa) was synthesized by inverse emulsion polymerization method to absorb excess water in concrete. Liquid paraffin was used as a continuous phase. Acrylic acid (AA) was neutralized by aqueous sodium hydroxide solution (8 M). Different amount of N,N'-methylene bisacrylamide (MBA) was used as a crosslinking agent to change crosslinking density of the synthesized PAANa. The size distribution of synthesized particles was measured by particle size analyzer. Swelling ratio of crosslinked PAANa was evaluated from the equation in D. I. water, cement aqueous solution, and $Ca(OH)_2$ aqueous solution. The FTIR spectroscopy was used to characterize $Ca^{2+}$ ion interaction with PAANa. Incorporation of 1.0 wt% PAANa into cement increased compressive and flexural strength approximately 30% and 10%, respectively, compared with those of ordinary portland cement.

Effects of various lights, solvents, and zinc protoporphyrin on the chemical behavior of MTT formazan (빛, 용매와 zinc protoporphyrin에 의한 MTT 포마잔의 화학적 동태 변화)

  • Kim, Joo Hyoun;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay is commonly used for analyzing the cell viability. In this study, effects of various solvents, different lights, and zinc protoporphyrin (ZnPP) on the chemical behavior of MTT formazan were investigated. The color response of MTT formazan in NaOH was highly pronounced; the absorbance of MTT formazan in 0.1 N NaOH at 550 nm was >2-fold higher than that in water, dimethyl sulfoxide (DMSO), methanol, and ethanol. MTT formazan in DMSO and NaOH (>0.1 N) was relatively stable under fluorescent and UV light at 365 nm; its rapid degradation was induced under UV light at 254 nm in all solvents. ZnPP degraded MTT formazan under light in a time- and concentration-dependent manner; MTT formazan in 0.1 N NaOH was the most sensitive to ZnPP, followed by DMSO. These results suggest that NaOH and DMSO might be suitable media for MTT formazan for monitoring photosensitizing properties.

A Study of Cathodic Reduction of Chromate Ion on Platinum (백금전극에서 크롬산염이온의 음극환원반응에 관한 연구)

  • Hwang, Kum-Sho
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.110-116
    • /
    • 1974
  • Reduction of chromate ion at the Pt-electrode was investigated in neutral unbuffered solutions, in buffered solutions of pH between 8 and 10, and in strongly alkaline medium. In buffered solutions of pH between 8 and 10, the number of electrons transfered in the reduction of chromate ion increased progressively with increasing pH. When chromate ion was reduced in 0.2 N sodium hydroxide medium the following mechanism was suggested: $CrO_4^=+H_2O+2e{\rightarrow}CrO_3^=+2OH^-,\;CrO_3^=3H_2O+e{\rightarrow}Cr(OH)_3+3OH^-$ When tetramethylammonium hydroxide (pH=13.5) was used as the supporting electrolyte, a second wave indicated strong adsorption. In unbuffered solutions of 0.1 N potassium chloride the linear sweep voltammogram consists of three or four distinct waves depending on the initial voltage and the voltage sweep rates, but the first wave was difficult to explain as a diffusion controlled wave.

  • PDF

Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach

  • Mansouri, Iman;Ostovari, Mobin;Awoyera, Paul O.;Hu, Jong Wan
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.319-332
    • /
    • 2021
  • The performance of gene expression programming (GEP) in predicting the compressive strength of bacteria-incorporated geopolymer concrete (GPC) was examined in this study. Ground-granulated blast-furnace slag (GGBS), new bacterial strains, fly ash (FA), silica fume (SF), metakaolin (MK), and manufactured sand were used as ingredients in the concrete mixture. For the geopolymer preparation, an 8 M sodium hydroxide (NaOH) solution was used, and the ambient curing temperature (28℃) was maintained for all mixtures. The ratio of sodium silicate (Na2SiO3) to NaOH was 2.33, and the ratio of alkaline liquid to binder was 0.35. Based on experimental data collected from the literature, an evolutionary-based algorithm (GEP) was proposed to develop new predictive models for estimating the compressive strength of GPC containing bacteria. Data were classified into training and testing sets to obtain a closed-form solution using GEP. Independent variables for the model were the constituent materials of GPC, such as FA, MK, SF, and Bacillus bacteria. A total of six GEP formulations were developed for predicting the compressive strength of bacteria-incorporated GPC obtained at 1, 3, 7, 28, 56, and 90 days of curing. 80% and 20% of the data were used for training and testing the models, respectively. R2 values in the range of 0.9747 and 0.9950 (including train and test dataset) were obtained for the concrete samples, which showed that GEP can be used to predict the compressive strength of GPC containing bacteria with minimal error. Moreover, the GEP models were in good agreement with the experimental datasets and were robust and reliable. The models developed could serve as a tool for concrete constructors using geopolymers within the framework of this research.

The Strength Characteristics of Activated Multi-Component Cement with Kaolinite (카올린을 혼합한 활성화된 다성분계 시멘트의 강도 특성)

  • Kim, Tae-Wan;Kim, Im-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.593-600
    • /
    • 2016
  • The paper presented investigates the effects of kaolinite on strength properties of alkali-activated multi-component cement. The binders of this study was blended of ground granulated blast furnace slag (GGBFS), fly ash (FA), silica fume (SF) and kaolinite (KA). In this study, the specimens of combination of 20%~70% GGBFS, 10%~60% FA, 10% SF (constant ratio) and 10%~50% KA binder were used for strength properties tests. The water/binder ratio was 0.5. The binders (GGBFS + FA + SF + KA) was activated by sodium hydroxide (NaOH) and sodium silicate ($Na_2SiO_3$) was 10% by total binder weight (10% NaOH + 10% $Na_2SiO_3$). The research carried out is on the compressive strength, water absorption, ultrasonic pulse velocity (UPV) and X-ray diffraction (XRD). The compressive strength decreased as the contents of KA increase. One of the major reason for this is the low reactivity of KA compared with other raw materials used as precursors such as GGBFS or FA. The presence of remaining KA indicates that the initially used quantity has not fully reacted during hydration. Moreover, the results have indicated that increased of KA contents decreased UPV under all experimental conditions. The drying shrinkage and water absorption increased as the content of KA increase. Test result clearly showed that the strength development of multi-component blended cement were significantly dependent on the content of KA and GGBFS.

Changes of Carbohydrate Composition and Enzyme Adsorption on the Hydrolysis of Steam Exploded Wood by Cellulase (Cellulase에 의한 폭쇄재의 가수분해에 있어서 탄수화물조성 및 효소흡착량 변화)

  • Yang, Jae-Kyung;Kim, Chul-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.67-78
    • /
    • 2001
  • Two species(Quercus mongolica, populus euramericana) of hardwood chips were subjected to steam explosion 25 kg/$cm^2$, for 6 min. The exploded woods were treated by the single or multi-stage chemical process with sodium hydroxide, sodium hypochlorite and sodium chlorite. The multi-stage treatment of exploded wood can be successfully removed lignin. Enzymatic hydrolysis rate of substrate varied from 25% for exploded wood to about 80% for the multi-chemical treated exploded wood. The enzymatic susceptibility was different among wood species. The multi chemical treatment of the exploded wood resulted in the high rate of glucose in the enzymatic hydrolyzate. Cellulase adsorption increased at high lignin content of substrates, while crystallinity, pore area and specific surface area of substrates did not affected enzyme adsorption. According to the proposed pretreatment and saccharification process in this study, it can be acquired about 37~40 kg of glucose from 100 kg of hardwood.

  • PDF

Effect on the Formation of Fe3O4 with Ferrous Sulfate/Ferric Sulfate Molar Ratio and Precipitants (Fe3O4 생성에 미치는 황산제일철/황산제이철 몰비와 침전제의 영향)

  • Eom, Tae-Hyoung;Kim, Sam-Joong;An, Suk-Jin;Oh, Kyoung-Hwan;Suhr, Dong-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.157-162
    • /
    • 2011
  • The effect of ferrous/ferric molar ratio and precipitants on the formation of nano size magnetite particle was investigated by coprecipitation method. Ferrous sulfate and ferric sulfate were used as iron sources and sodium hydroxide and ammonium hydroxide was used as a precipitant. Single phase magnetite was synthesized with all of experiment conditions (ferrous/ferric molar ratios and precipitants). Particle size was smaller, and particle size distribution was narrower when NaOH was used than $NH_4OH$ was used. The crystallinity and particle size was increased and narrower particle size distribution with increasing molar ratio ferrous/ferric sulfate with the same precipitant. Super paramagnetism could be obtained at all of experiment conditions. The highest saturation magnetization (72 emu/g) was obtained when the ferrous/ferric molar ratio was 2.5 and precipitant was used $NH_4OH$.