• Title/Summary/Keyword: sodium fast reactors

Search Result 68, Processing Time 0.024 seconds

SAFETY ASPECTS OF INTERMEDIATE HEAT TRANSPORT AND DECAY HEAT REMOVAL SYSTEMS OF SODIUM-COOLED FAST REACTORS

  • CHETAL, SUBHASH CHANDER
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.260-266
    • /
    • 2015
  • Twenty sodium-cooled fast reactors (SFRs) have provided valuable experience in design, licensing, and operation. This paper summarizes the important safety criteria and safety guidelines of intermediate sodium systems, steam generators, decay heat removal systems and associated construction materials and in-service inspection. The safety criteria and guidelines provide a sufficient framework for design and licensing, in particular by new entrants in SFRs.

Remote NDT for Inspection of Reactor Vessel Components of fast Breeder Test Reactor

  • Anandapadmanaban, B.;Srinivasan, G.;Kapoor, R.P.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.520-525
    • /
    • 2003
  • Fast Breeder Test Reactor (FBTR) is a 40MW (thermal) / 13.2MW (electrical), Plutonium - Uranium mixed carbide fuelled, sodium cooled, loop type nuclear reactor operating at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam. Its main aim is to generate experience in operation of fast reactors and sodium systems and to serve as an irradiation facility for development of fuels and structural materials fur fast reactors. Nuclear reactors pose difficulties to the NDT techniques used to monitor the conditions of the internal components. Sodium cooled fast breeder reactors have their own typical difficulties in using the NDT techniques. These are due to the need for operation in aggressive environment of nuclear radiation and sodium (molten/vapour), as well as the need to maintain leak tightness of a very high order during all states of reactor operation and shutdown for fuel handling, maintenance and remote inspection. This paper discusses the following NDT techniques, which have been successfully used for the past 15 years in FBTR: (i) Periscope and Projector, (ii) Core Co-ordinate Measuring Device and, (iii) Optical fiberscope. The inspection using these techniques have given confidence for further reactor operation at high power by giving useful data on the conditions of the components inside the reactor vessel.

Safety Characteristics of Metal-Fueled Sodium-Cooled Fast Reactor (금속연료를 사용하는 소듐냉각 고속로의 안전특성)

  • Jeong, Hae-Yong
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.19-30
    • /
    • 2014
  • The leading countries in nuclear technology development are concentrating their efforts on the development of Sodium-cooled Fast Reactor, which is one of the Generation-IV nuclear reactor systems characterized by a sustainability, an enhanced safety, proliferation resistance, and improved economics. Especially, the Republic of Korea is developing a Sodium-cooled Fast Reactor equipped with metallic-fuel. This type of fast reactor has superior inherent safety and passive safety characteristics. Further, sodium-cooled fast reactors enable the reuse of spent fuel and the closing of fuel cycle, thus, it increases the sustainability of nuclear energy. Many countries are planning the deployment of sodium-cooled fast reactors before 2050 in their energy mix.

LINEAR PROGRAMMING OPTIMIZATION OF NUCLEAR ENERGY STRATEGY WITH SODIUM-COOLED FAST REACTORS

  • Lee, Je-Whan;Jeong, Yong-Hoon;Chang, Yoon-Il;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.383-390
    • /
    • 2011
  • Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. A Sodium-cooled Fast Reactor (SFR) was developed to extend uranium resource utilization under a growing nuclear energy scenario while concomitantly providing a nuclear waste management solution. Key questions in this scenario are when to introduce SFRs and how many reactors should be introduced. In this study, a methodology using Linear Programming is employed in order to quantify an optimized growth pattern of a nuclear energy system comprising light water reactors and SFRs. The optimization involves tradeoffs between SFR capital cost premiums and the total system U3O8 price premiums. Optimum nuclear growth patterns for several scenarios are presented, as well as sensitivity analyses of important input parameters.

Numerical evaluation of hypothetical core disruptive accident in full-scale model of sodium-cooled fast reactor

  • Guo, Zhihong;Chen, Xiaodong;Hu, Guoqing
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2120-2134
    • /
    • 2022
  • A hypothetical core destructive accident (HCDA) has received widespread attention as one of the most serious accidents in sodium-cooled fast reactors. This study combined recent advantages in numerical methods to realize realistic modeling of the complex fluid-structure interactions during HCDAs in a full-scale sodium-cooled fast reactor. The multi-material arbitrary Lagrangian-Eulerian method is used to describe the fluid-structure interactions inside the container. Both the structural deformations and plug rises occurring during HCDAs are evaluated. Two levels of expansion energy are considered with two different reactor models. The simulation results show that the container remains intact during an accident with small deformations. The plug on the top of the container rises to an acceptable level after the sealing between the it and its support is destroyed. The methodology established in this study provides a reliable approach for evaluating the safety feature of a container design.

Use of similarity indexes to identify spatial correlations of sodium void reactivity coefficients

  • Jimenez-Carrascosa, Antonio;Garcia-Herranz, Nuria
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2442-2451
    • /
    • 2020
  • The safety level of Sodium Fast Reactors is directly related with the sodium void reactivity. A low-void effect design has been proposed within the Horizon2020 ESFR-SMART project thanks to the introduction of a sodium plenum above the active core. In order to assess the impact of this core conception on transient analysis, a map with the spatial distribution of sodium void worth can be computed and fed into a point-kinetics-based transient code. Due to the spatial correlations between neighboring zones, the global effect of voiding two different axial or radial regions is not necessarily the sum of both individual contributions. Neglecting those correlations in the void worth map and consequently in the transient analysis may lead to an unrealistic prediction of the transient sequences. In this work, a method based on sensitivity analysis and similarity assessment is proposed for predicting those correlations. The method proved to be able to establish correlations between axial slices of a sub-assembly and was checked against realistic sodium void propagation patterns.

PHYSICS OF AMERICIUM TRANSMUTATION

  • Wallenius, Janne
    • Nuclear Engineering and Technology
    • /
    • v.44 no.2
    • /
    • pp.199-206
    • /
    • 2012
  • Using fast neutron Generation IV reactors, recycling of americium and curium may become feasible. The detrimental impact of americium on safety parameters has recently been quantified in terms of a power penalty for surviving a given set of transients in sodium fast reactors. In the present paper, a review of the physical reasons for the adverse effect of americium is provided, and different Gen-IV technologies are assessed with respect to their capability of hosting americium in the fuel.

FAST (floating absorber for safety at transient) for the improved safety of sodium-cooled burner fast reactors

  • Kim, Chihyung;Jang, Seongdong;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1747-1755
    • /
    • 2021
  • This paper presents floating absorber for safety at transient (FAST) which is a passive safety device for sodium-cooled fast reactors with a positive coolant temperature coefficient. Working principle of the FAST makes it possible to insert negative reactivity passively in case of temperature rise or voiding of coolant. Behaviors of the FAST in conventional oxide fuel-loaded and metallic fuel-loaded SFRs are investigated assuming anticipated transients without scram (ATWS) scenarios. Unprotected loss of flow (ULOF), unprotected loss of heat sink (ULOHS), unprotected transient overpower (UTOP) and unprotected chilled inlet temperature (UCIT) scenarios are simulated at end of life (EOL) conditions of the oxide and the metallic SFR cores, and performance of the FAST to improve the reactor safety is analyzed in terms of reactivity feedback components, reactor power and maximum temperatures of fuel and coolant. It is shown that FAST is able to improve the safety margin of conventional burner-type SFRs during ULOF, ULOHS, UTOP and UCIT.

FRENCH PROGRAM TOWARDS AN INNOVATIVE SODIUM COOLED FAST REACTOR

  • Martin, Ph.;Anzieu, P.;Rouault, J.;Serpantie, J.P.;Verwaerde, D.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.237-248
    • /
    • 2007
  • Sodium-cooled fast reactor is considered in France as a potential candidate for a prototype of 4th generation system to be built by 2020. A detailed working program has been launched recently to identify by 2012 the potential improvement tracks for later industrial development of these reactors. The goals for innovation are first identified: Progress of the safety with a special attention to severe accidents risk minimization and mitigation (defense in depth approach); Economic competitiveness of the system mainly by reducing the capital cost, the investment risks by enhancing in service inspection and repair capacities, and raising the availability; Sustainability with fissile material management while reducing the proliferation risk; capacity for long-lived waste transmutation.