• Title/Summary/Keyword: sodium carbonate solution

Search Result 94, Processing Time 0.02 seconds

The Effect of Fixing Agents and Softner on Sericin Fixation of Trimethylolmelamine (트리메틸올멜라민의 세리신 정착에 있어 정착제와 유연제의 영향)

  • Park, Geon-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.93-98
    • /
    • 2017
  • The fixing behaviors of raw silk yarns treated with melamine and formaldehyde at a molar ratio of 1:3 for trimethylolmelamine were investigated. Sericin was fixed during the fixing process, but a part of sericin I was removed simultaneously by hot water. The weight losses by fixing and the degumming losses by degumming greatly decreased with increasing concentrations of melamine and formaldehyde. The silk yarns fixed with 0.011 M melamine and 0.033M formaldehyde were significantly degummed due to the insufficient fixation of sericin and the alkaline hydrolysis of sericin by sodium carbonate during the degumming process. On the other hand, the silk yarns fixed with 0.055M melamine and 0.165M formaldehyde were degummed slightly (the degumming losses of 3-8%) due to the strong fixation of sericin, which might result from the many cross-linkages between the sericin I molecules, which were formed by trimethylolmelamine. Those fixed with the fixing solution containing 15% owf softener showed the lowest weight and degumming losses because under the condition of 15% owf softener, the cation of the softener can effectively form ionic bonds with the negatively charged side chain of aspartic acid in sericin. In addition, van der Waals' forces may be also formed between the hydrophobic tail of the softener and the hydrophobic region of sericin, which may help inhibit the removal of sericin I.

Studieson Titanium Enamel Frit (티타늄琺瑯후릿트에 關한 硏究)

  • Lee, Chong-Keun;Han, Ki-Sung
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.18-26
    • /
    • 1957
  • There are two problems to be solved by our efforts in the enamel frit. One is how we can cover the enamel frit thin with complete milk white as possible, and the other is how it can be, made resistant for chemicals than before one. The frit which can solved the two problems just mentioned above is titanium enamel frit. This frit has been developed in America after War Ⅱ, and now the research for concerning antimony frit into titanium frit is under development entirely. In order to develope the enamel industry in Korea, it is urgent problem to convert antimony frit into titanium frit. By the way the titanium frit is emulsified titanium oxide crystal which made through reheating the supersaturated solution of titanium oxide in the basis of glass. Unfortunately, there are many obscure points in active fact or which influence on its composition and characteristics yet. However, this task was tried for the first in Korea. As first step, the test was carried on the reference books, and we can be possible convert antimony frit into titanium frit as a result of this experiment. As a conclusion, for the purpose of developing the enamel industry in Korea, we studied that the research for converting antimony enamel frit which has been used popularly into titanium enamel frit which is more economic and resistant for chemicals. As a result of experiments, the following points concerning with titanium frit have become clearly. 1. It is better when the composition of titanium enamel frit has as following table.Man Duck San Silica 24 An Yang Feldspar 20 Borax 28 Sodium Nitrate 4 Cryolite 7 Calcium Carbonate 3.6∼1 Titanium Oxide 10 Calcium phosphate 0 ∼3.2 Calcium Fluoride 0∼1.8 Antimony Oxide 0∼0.5 2. The amount of $TiO_2$, to be added is $10%\;to\;12{%,\;CaF_2\;is\;under\;1.8%,\;P_2O_5\;is\;under\;1.6%,\;Sb_2O_3\;is\;under\;0.5%$. 3. In the titanium frit, the limit of iron oxide amount to be included is under 0. 5%. 4. Comparing the titanium enamel frit with antimony enamel frit not only the titanium frit can be savely 20.6% in the price of raw materials, but one time of glazing and heating process is omitted in each case, and it is known the titanium frit is more resistant for chemicals than antimony frit.

  • PDF

Study on the Facile Preparation of S-2-(${\omega}$-aminoalkylamino) ethyl Dihydrogen Phosphorothioates (티오인산이수소 S-2-(${\omega}$-아미노알킬아미노) 에틸들의 간편합성법 연구)

  • You Sun Kim;Suc Won Kim
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.449-456
    • /
    • 1983
  • The facile route of preparing S-2-(${\omega}$-aminoalkylamino) ethyl dihydrogen phosphorothioates, potential chemical radioprotectants, have been studied. Intermediate 3-(2-phthalimidoethyl)-2-oxazolidinone was prepared by a reaction of potassium phthalimide and 3-(2-bromoethyl)-2-oxazolidinone, which was obtained through the alkaline ring closure of a mixture of carbonate and 2,2'-dibromo diethylamine prepared from diethanolamine. This was converted to N-[2-(2-bromoethylamino)ethyl] phthalimide hydrobromide by 30% HBr(gas) in acetic acid and N-(2-bromoethyl)-1,2-ethanediamine dihydrobromide was obtained by reacting the hydrobromide with a solution of HBr-HOAc. N-(2-bromoethyl)-1,3-propanediamine dihydrobromide could be prepared through the Cortese treatment of 2-(3-aminopropylamino) ethanol, which was prepared by a reaction of 1,3-diaminopropane and 2-chloroethanol. These dihydrobromides were treated by sodium thiophosphate in DMF to result S-2-(${\omega}$-aminoalkylamino) ethyl dihydrogen phosphorothioates. The characteristics of each reaction path were discussed in regards to reaction conditions and overall yields and a facile route of preparing each derivative was proposed.

  • PDF

Development of Accident Response Information Sheets for Hydrogen Fluoride (불화수소에 대한 사고대응 정보시트 개발)

  • Yoon, Young Sam;Park, Yeon Shin;Kim, Ki Joon;Cho, Mun Sik;Hwang, Dong Gun;Yoon, Jun heon;Choi, Kyung Hee
    • Korean Journal of Hazardous Materials
    • /
    • v.2 no.1
    • /
    • pp.18-26
    • /
    • 2014
  • We analyzed the demand of competent authorities requiring adequate technical information for initial investigation of chemical accidents. Reflecting technical reports on chemical accident response by environmental agencies in the U.S. and Canada, we presented information on environmental diffusion and toxic effects available for the first chemical accident response. Hydrogen fluoride may have the risk potential to corrode metals and cause serious burns and eye damages. In case of inhalation or intake, it could have severe health effects. The substance itself is inflammable, but once heated, it decomposes producing corrosive and toxic fume. In case of contact with water, it can produce toxic, corrosive, flammable or explosive gases and its solution, a strong acid, may react fiercely with a base. In case of hydrogen fluoride leak, the preventive measures are to decrease steam generation in exposed sites, prevent the transfer of vapor cloud and promptly respond using inflammable substances including calcium carbonate, sodium bicarbonate, ground limestone, dried soil, dry sand, vermiculite, fly ash and powder cement. The method for fire fighting is to suppress fire with manless hose stanchions or monitor nozzles by wearing the whole body protective clothing equipped with over-pressure self-contained breathing apparatus from distance. In case of transport accident accompanied with fire, evacuation distance is 1,600m radius. In cae of fire, fire suppression needs to be performed using dry chemicals, CO2, water spray, water fog, and alcohol-resistance foam, etc. The major symptoms by exposure route are dyspnoea, bronchitis, chemical pneumonia and pulmonary edema for respiration, skin laceration, dermatitis, burn, frostbite and erythema for eyes, and nausea, diarrhea, stomachache, and tissue destruction for digestive organs. In atmosphere, its persistency is low, and its bioaccumulation in aquatic organism is also low.