• Title/Summary/Keyword: soda process

Search Result 132, Processing Time 0.026 seconds

RECENT DEVELOPMENTS OF MEMBRANE TECHNOLOGY IN JAPAN

  • Kimura, Shoji
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1991.04a
    • /
    • pp.10-12
    • /
    • 1991
  • The first membrane technology applied in the Japanese industry was a. electro-dialysis(ED) process using ion-exchange meabranes. These membranes were first developed in early 50ties and the Japanese government decided to use this method for concentration of sea water to produce salt, which was then produced by solar evaporation. This development program started from 1960 by the Japan monopoly Coop. (at that time). To apply ED process for sea-water concentrat ion it was necessary to develop ion-exchange membranes having very low electric resistance to avoid energy loss due to Joule heat, and those having selectivity to permeate single valent ions only to avoid scale formation in the ED stacks. These Japanese companies, Asahi Glass, Asahi Chemical and Tokuyama Soda, have succeeded to develop such membranes, and until 1971 all of the seven salt manufacturing companies had adopted ED for production of food salt.

  • PDF

Improvement of Mechanical Property by Single Ion Exchange Process in Substrate Glass

  • Lee, Hoi-Kwan;Kang, Won-Ho;Green, David J.
    • Journal of Information Display
    • /
    • v.4 no.3
    • /
    • pp.12-16
    • /
    • 2003
  • In connection with the ion exchange strengthening on soda-lime-silicate, substrate glass for display use was investigated. In the processing, the temperature was varied during the ion exchange in order to make stress profile and to determine optimum condition. In the present work, we found that the maximum value of strength was 617.8 MPa after an ion exchange process at 470 $^{\circ}C$ for 1h, and then, at 450 $^{\circ}C$ for 24h. Also, the effect of residual stress placed on the near surface was measured by analyzing the number of crack branches and brittleness. This approach allowed us the residual stress profile to be engineered to improve mechanical reliability.

A study on the strengthening of Sodalime glass using ion exchange method (이온강화법을 이용한 소다라임 글라스 강화에 관한 연구)

  • Ahn, H.W.;Oh, J.H.;Kweon, S.G.;Choi, S.D.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.145-151
    • /
    • 2014
  • The glass used for mobile display windows is required to have high strength. Chemical strengthening by means of ion exchange is widely used glass. The depth of the layer and the compressed stress are affected by tempering temperature and time. The purpose of this study is to investigate the range of DOL and CS, which to less breakage during reliability tests such as the ball drop test, hole drop test, 3-point bending test, drop test, and tumble test with Soda-lime Glass.

Recovery of Caustic Soda in Textile Mercerization by Combined Membrane Filtration (복합 막분리 공정에 의한 섬유가공 공정에서의 가성소다 회수)

  • Yang, Jeong-Mok;Park, Chul-Hwan;Cho, Jin-Ku;Kim, Sang-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1273-1280
    • /
    • 2008
  • This study sought to establish the optimum operating condition for the recovery of caustic (NaOH) solution from mercerization in textile process. As main factors, the silt density index (SDI) evaluation of ceramic membrane for the application of nanofiltration/reverse osmosis (NF/RO) membrane, the recovery yield measurement of caustic solution for the application of polymeric membrane, the optimum condition of chemical cleaning for the membrane regeneration, the optimum removal condition of total organic carbon (TOC), turbidity, color, and the permeate flux of ceramic membrane/polymeric membrane combined process were investigated. As results, ceramic ultrafiltration (UF) in the first step and nanofiltration (NF) in the second step were found to be suitable for the removal of total suspended solid (TSS), residual organics, turbidity including color, and the recovery of caustic solution from caustic wastewater stream in mercerization process. When only the ceramic UF membrane was used, the rejection efficiency of both of TSS and turbidity was more than 99.0%, and the color and TOC were rejected about 74.7% and 49.2%, respectively. Meanwhile, the combined membrane precess of UF and NF membranes showed even more efficient removal abilities and thus more than 99.9% of TSS and turbidity, 87.7% of color, and 78.2% of TOC were removed. In particular, 91.3% of NaOH was successfully recovered with 83.7% of total volume in the combined membrane process. With this regard, a clean caustic solution was obtained in a high purity, which can be reused for mercerization process, expecting to offer economical benefits.

Characterization of transparent Sb-doped $SnO_2$ conducting films by XPS analysis (XPS를 이용한 Sb-doped $SnO_2$ 투명전도막의 특성 분석)

  • 임태영;김창열;심광보;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.5
    • /
    • pp.254-259
    • /
    • 2003
  • In the fabrication process of transparent conducting thin films of the ATO (antimony-doped tin oxide) on a soda lime glass substrate by a sol-gel dip coating method, the effects of the $SiO_2$ buffer layer formed on the substrate and $N_2$ annealing treatment were investigated by XPS (X-ray photoelectron spectroscopy) analysis. Optical transmittance and electrical resistivity of the 400 nm-thick ATO thin films which were deposited on $SiO_2$ buffer layer/soda lime glass and then annealed under nitrogen atmosphere were 84 % and $5.0\times 10^{-3}\Omega \textrm{cm}$ respectively. The XPS analysis confirmed that a $SiO_2$ buffer layer inhibited Na ion diffusion from the substrate, resulting in prohibiting the formation of a secondary phase such as $Na_2SnO_3$ and SnO and increasing Sb ion concentration and ratio of $Sb^{5+}/Sb^{3+}$ in the film. And it was also found that $N_2$ annealing treatment leads to the reduction of $Sn^{4+}$as well as $Sb^{5+}$ however the reduction of $Sn^{4+}$ is more effective and therefore consequently results in decrease in the electrical resistivity to produce an excellent electrical properties of the film.

Non-destructive Analysis on the Chemical Properties of Glass Beads (비파괴 분석을 통한 유리구슬의 화학적 특성 연구)

  • Park, Jae Hyung;Chung, Kwang Yong;Cho, Sun Heum
    • 보존과학연구
    • /
    • s.35
    • /
    • pp.5-23
    • /
    • 2014
  • The possibility of non-destructive inspection glass beads for verification. Conduct a comparative analysis of the Chungcheong area with glass beads excavated Age-specific characteristics of the glass beads shall be classified by region. Trace amounts of ingredients such as CaO, $Al_2O_3$ (stabilizer), MgO, the difference is negligible. $SiO_2$ (subjects), $Na_2O$ (flux) analysis and the difference between the values was greater than in the other ingredients. Composition differences occurred rough surface to a non-uniform cross-section analysis is considered. Minimize the error value, such as the surface of carbon-coated Study, there are additional requirements. Produced at the time of the social and cultural characteristics of ancient glass and important archaeological materials, and to inform the process of cultural exchange between each region in the production of glass technology era according to the level of science and technology, arts and crafts, can be identified.

  • PDF

Effect of Current Density and pH of Electrolyte on Anion-Exchange Membrane Fouling (전류밀도와 전해질의 pH가 음이온교환막의 막 오염에 미치는 영향)

  • Choi, Jae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.965-969
    • /
    • 2005
  • Current density is an important operating parameter in the ion-exchange membrane process. We observed the effects of fouling of a Neosepta AMX anion-exchange membrane(Tokuyama Soda, Japan) in 0.02 M NaCl solution containing 100 mg/L sodium humate. Membrane fouling was analyzed by measuring the change in the electrical resistance in the under- and over-limiting current density regions. The experimental results found that membrane fouling was negligible at under-limiting current densities, but was increased significantly when an over-limiting current was supplied. After the fouling experiments, the current-voltage curves for the fouled membranes were measured. From the curves, we observed increased electric resistance and reduced limiting current density(LCD), caused by the accumulation of humic acid on the membrane surface. Furthermore, membrane fouling increased as the acidity of the electrolyte solution containing humic acid increased. This occurred because the fouling of an anion-exchange membrane is affected more by the physicochemical properties of the humic substance than by the surface charge of the humate.

A study on dielectric characteristic of phosphate glass-ceramic for AC-PDP (AC-PDP용 인산염 결정화 유리의 유전적 특성에 관한 연구)

  • Kim, Joon-Hyung;Yon, Seog-Joo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.3
    • /
    • pp.102-107
    • /
    • 2007
  • Dielectric layer of phosphate glass for plasma display panel (PDP) device made by silk screen printing on soda-lime glass. For regulate thermal expansion coefficient (CTE) of between substrate glass and dielectric layer use addition of $Al_2O_3$ and $TiO_2$. The crystallization process of glass-ceramics for dielectric layer have been examined by DTA, XRD some of optical, electrical properties of the dielectric layer were evaluated by UV-spectrometer, dilatometer, impedance analyser. The principal crystalline phase was identified as zinc metaphosphate [$Zn(PO_3)_2$] and zinc pyrophosphate [$Zn_2P_2O_7$]. Reflectance and dielectric constance increased with the addition of $TiO_2$ filler, dielectric constant lower the out side reflectance unchanging of the adding of $Al_2O_3$ filler. Besides CTE was at about $62{\times}10^{-7}/^{\circ}C$.

The Simulation and Control of the Reactive Distillation Process for Dimethylcarbonate(DMC) Production

  • Jang, Yong-Hee;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1215-1220
    • /
    • 2004
  • Reactive distillation (RD) is a combination process where both separation and reaction are considered simultaneously in a single vessel. This kind of combination to enhance the overall performance is not a new attempt in the chemical engineering areas. The recovery of ammonia in the classic Solvay process for soda ash of the 1860s may be cited as probably the first commercial application of RD. The RD system has been used for a long time as a useful process and recently the importance of the RD is enlarged more and more. In addition to that, the application fields of RD are diversely diverged. To make the most of the characteristic of RD system, we must decide the best operating condition under which the process shows the most effective productivity and should decide the best control algorithm which satisfies an optimal operating condition. Phosgene which is a highly reactive chemical is used for the production of isocyanates and polycarbonates. Because it has high reactivity and toxicity, its utilization is increasingly burdened by growing safety measures to be adopted during its production. Dimethyl Carbonate (DMC) was proposed as a substitute of phosgene because it is non-toxic and environmentally benign chemical. In this study, RD is used for DMC production process and the transesterification is performed inside of column to produce DMC. In transesterification, the methanol and ethylene carbonate (EC) are used as the reactants. This process use homogeneous catalyst and the azeotrope exists between the reactant and product. Owing to azeotrope, we should use two distillation columns. For this DMC production process, we can suggest two configurations. One is EC excess process and the other is methanol excess process. From the comparison of steady state simulation results where the Naphtali-Sandholm algorithm is used, it showed the better performance to use the methanol excess process configuration than EC excess process. Then, the dynamic simulation was performed to be based on the steady state simulation results and the optimal control system was designed. In addition to that, the optimal operating condition was suggested from previous results.

  • PDF

Effect of Sugarcane Bagasse Soda-AQ Pulp Bleaching Properties by Type of Chelate Compounds and Simultaneous Process of (DQ) Stage (이산화염소 표백단계와 킬레이트 처리단계 동시 진행 시 킬레이트 종류가 사탕수수 Soda-AQ 펄프 표백에 미치는 영향)

  • Lee, Jai-Sung;Shin, Soo-Jeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.147-155
    • /
    • 2016
  • Pulp made from sugarcane bagasse (SCB) was bleached in element chlorine free (ECF) sequence. The peroxide bleaching process for the final bleaching process has been introduced in order to reduce the use of chlorine dioxide. Prior to peroxide bleaching, different chelating chemicals were applied. When 4.5% of the total chlorine dioxide was used, bleached SCB pulp using additional DTPA chelate stage (DEDQP) resulted in 87.0% of the ISO brightness. However, bleached pulp using simultaneous stage of DTPA chelate and chlorine dioxide (DE(DQ)P) was reached at 83.9% of the ISO brightness. The viscosity of DEDQP bleached pulp was 25.6 cPs, and the one of DE(DQ)P bleached pulp was 21.9 cPs. Decreasing of chelate effect by chlorine dioxide led to a decrease in the final brightness and a lower viscosity. But simultaneous stage of EDTA chelate and chlorine dioxide (DE(DQ)P) led to higher final brightness (87.0% ISO) and higher viscosity (25.8 cPs) than those of the $DEDQ_{EDTA}P$ bleached pulp (86.4% ISO, 25.2 cPs).