• Title/Summary/Keyword: soda

Search Result 538, Processing Time 0.029 seconds

Analysis of the relationship between composition and viscosity of soda-lime glass bottles (소다석회유리병의 조성과 점도의 상관관계 분석)

  • Seung Min Kang;Chang-Sam Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.1
    • /
    • pp.7-14
    • /
    • 2023
  • Forty Viscosity data of glass bottles fabricated in a glass bottle manufacturing plant for 4 years were calculated using Lakatos model. The relationship between the glass bottle compositions and viscosities at log η of 3, 6.6, 10 and 12.3 Pa·s was analyzed. MgO that was a component of the glass bottle showed the maximum coefficient of variation of 0.89, but it gave a very small change in the viscosity. CaO that was another component of the glass bottle lowered the isokom temperature because it tended to reduce the number of non-bridging oxygen at temperature below a softening point.

Strength & Microstructure of Class-C fly Ash Activated in Waste Glass Based Alkaline Solution

  • Sasui, Sasui;Kim, Gyu Yong;Pyeon, Su Jeong;Suh, Dong Kyun;Lee, Yae Chan;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.136-137
    • /
    • 2021
  • The soda lime waste glass powder was dissolved in NaOH-4M solution to synthesize an alkaline activator, which was used to activate Class-C fly ash (FA). Compressive and flexural strength tests were conducted to determine the mechanical properties. Archimedes' principle was applied to measure the porosity of samples, (SEM-EDX) and XRD was used to study the microstructure and phase changes of samples. Through Inductive Coupled Plazma technique, the solution was found to increase the concentration of Si as the amount of dissolved glass powder was increased. Owing to the increased concentration of Si in an alkaline solution, the reactivity of FA was accelerated resulting in an increased strength and reduced porosity. Additionally, the dissolution of FA was improved as well as the formation of amorphous phases in the matrix was also enhances with the concentration of increased Si in an alkaline solution.

  • PDF

Evolution of the Hanji-making Technology, from Ancient Times to the Present

  • Oh-Kyu LEE;Seokju KIM;Hyung Won LEE
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.509-525
    • /
    • 2023
  • This study has delved into the evolution of Hanji-manufacturing molds and techniques from ancient times to the present, aiming to uncover the current state of traditional Hanji-making techniques. In the absence of records on Hanji-making, various ancient documents, rare books, and documents during the Japanese occupation period, among other artifacts and relics, were analyzed in this study. It was discovered that a sudden significant transformation occurred in the Hanji field during the Japanese occupation period. Soda ash and caustic soda were commonly used for the pretreatment of White bark. Furthermore, a chemical bleaching powder was introduced for the pretreated White bark. Additionally, manual beating of the bark was replaced by mechanical beating methods. While these changes brought convenience to papermakers, they also resulted in a deterioration of Hanji quality. Furthermore, it was revealed that the term "Hanji" has been in use since at least 1908. Furthermore, this study clarified that Heulimtteugi is not the only traditional Hanji-making method in Korea. Instead, there existed Korea's own traditional Gadoomtteugi method, at least up to the 1930s, before the Japanese-style Gadoomtteugi became common in Korea. Additionally, for the first time, this study raises the possibility of the adoption of mold-hanging techniques into Korea's Heulimtteugi method from foreign sources.

Recent changes in the phytoplankton community of Soda Lake Chitu, Ethiopia, in response to some environmental factors

  • Demtew Etisa;Yiglet Mebrat
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.1
    • /
    • pp.23-34
    • /
    • 2024
  • While scientific information on the spatial variation of soda lake Microalgae is important to limnological studies, little information was reported from the Ethiopian Rift Valley Lake, Lake Chitu. This study aimed to understand the spatial distribution of the dominant Microalgae taxa in Lake Chitu, Ethiopia. The collection of samples and in situ measurements of some physico-chemical parameters were recorded at three sites for one cycle in November 2021. Fourteen species or genera of Microalgae were identified. Among those, Bacillariophyta were the most important with regard to species abundance and the rarest in species richness. Cyanophyta were the second-most important group in terms of species richness and rarity. Comparatively, all microalgae taxa were rare at both the anthropogenic areas (AA) and the flooding area (FA), which could be mainly due to intensive human and animal intervention and associated with extreme turbidity. Among Cyanophyta, Chroococcus minutus, Microcystis aeruginosa, and Spirulina platensis/fusiformis were predominant at both AA and FA, revealing their adaptation to less clear water and pollution. But S. platensis/fusiformis attained the highest abundance at the FA, indicating their preference for water in a highly nutrient-enriched area. We concluded that the spatial variation of microalgae diversity in relation to water quality parameters has implications for the importance of microalgae as a baseline indicator of water quality assessment tools in lakes.

Effects of Sodium and Gallium on Characteristics of CIGS Thin Films and CdS/CIGS Solar Cells by Co-evaporation Method (Na확산과 Ga첨가에 따른 동시진공증발법으로 제조된 CIGS 박막과 CdS/CIGS 태양전지의 특성)

  • Kwon, S.H.;Lee, J.C.;Kang, K.H.;Kim, S.K.;Yoon, K.H.;Song, J.S.;Lee, D.Y.;Ahn, B.T.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.43-54
    • /
    • 2000
  • We prepared and characterized $Cu(In_{1-x}Ga_x)Se_2$(CIGS) films using a elemental co-evaporation method for absorbing layer of high efficiency thin film solar cells. The CIGS films deposited on a soda-lime glass exhibited low resistivity because of higher carrier concentration. Na was accumulated at the CIGS surface and the 0 and Se were also accumulated at the surface, suggesting that oxidation is a driving force of Na accumulation. The structure of CIGS film was modified or a secondary phase was formed in the Cu-poor CIGS bulk films probably due to the incorporation of Na into Cu vacancy sites. As the Ga/(In+Ga) ratio increased, the diffraction peaks of $Cu(In_{1-x}Ga_x)Se_2$ films were shifted to larger angle and splitted, and the grain size of $Cu_{0.91}(In_{1-x}Ga_x)Se_2$ films became smaller. All $Cu_{0.91}(In_{1-x}Ga_x)Se_2$ films showed the p-type conductivity regardless of the Ga/(In+Ga) ratio. Ag/n-ZnO/i-ZnO/CdS/$Cu_{0.91}(In_{0.7}Ga_{0.3})Se_2$/Mo solar cells were fabricated. The currently best efficiency in this study was 14.48% for $0.18cm^2$ area ($V_{oc}=581.5mV,\;J_{sc}=34.88mA$, F.F=0.714).

  • PDF

The Chemical Composition and Working Techniques of the Glass Beads Excavated in the Jisan-dong No. 73-74 Ancient Tombs, Goryeong (고령 지산동 73~74호분 출토 유리구슬의 제작 기법과 화학 조성)

  • Kim Nayoung;Kim Euna;Kim Gyuho
    • Conservation Science in Museum
    • /
    • v.31
    • /
    • pp.21-37
    • /
    • 2024
  • This paper sought to garner an understanding of Daegaya glass culture by observing the micro-structure and analyzing the chemical composition of 43 glass beads excavated from the No.73 and 74 ancient tombs in Jisan-dong, Goryeong, which are estimated to have a central age of 5th century CE. The visible characteristics and micro-structure of these artifacts were observed with a optical microscope and an scanning electron microscope, while their chemical composition was analyzed with an energy-dispersing spectrometer attached to the scanning electron microscope. As a result, the glass beads of Jisan-dong, Goryeong were identified to have been formed using various methods such as drawing, casting, and folding techniques, with the majority molded by the drawing technique. In terms of chemical composition, 32.6% were in the potash glass group and 67.4% in the soda glass group, with the latter divided into various fluxes such as high alumina glass, netron glass, and plant ash glass. Compared to Baekje's cultural region in the same age, the composition of these ancient glass artifacts demonstrates a high share of the potash glass group. This shows that, despite the shift from the potash glass group to the soda glass group in ancient Korean glass culture, glass composition differs from region to region or depending on the cultural sphere of influence. In the soda glass group, high-alumina glass comprised 23.3%, natron glass 43.0%, and plant ash glass was 1.2%. Among them, the main type of Korean soda glass is high-alumina glass, as natron glass and plant ash glass are known to have appeared later, but the results of scientific analysis of the glass beads excavated in Jisan-dong can be expected to provide important clues about the inflow and transformation of ancient glass on the Korean Peninsula. In the No. 73, 74, and 74-1 ancient tombs, which were found to have been built in chronological order by the excavation survey, the glass beads showed only slight variations depending on their production period. Nonetheless, the chemical composition of glass is deemed to have a close correlation to color.

Characterization of transparent Sb-doped $SnO_2$ conducting films by XPS analysis (XPS를 이용한 Sb-doped $SnO_2$ 투명전도막의 특성 분석)

  • 임태영;김창열;심광보;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.5
    • /
    • pp.254-259
    • /
    • 2003
  • In the fabrication process of transparent conducting thin films of the ATO (antimony-doped tin oxide) on a soda lime glass substrate by a sol-gel dip coating method, the effects of the $SiO_2$ buffer layer formed on the substrate and $N_2$ annealing treatment were investigated by XPS (X-ray photoelectron spectroscopy) analysis. Optical transmittance and electrical resistivity of the 400 nm-thick ATO thin films which were deposited on $SiO_2$ buffer layer/soda lime glass and then annealed under nitrogen atmosphere were 84 % and $5.0\times 10^{-3}\Omega \textrm{cm}$ respectively. The XPS analysis confirmed that a $SiO_2$ buffer layer inhibited Na ion diffusion from the substrate, resulting in prohibiting the formation of a secondary phase such as $Na_2SnO_3$ and SnO and increasing Sb ion concentration and ratio of $Sb^{5+}/Sb^{3+}$ in the film. And it was also found that $N_2$ annealing treatment leads to the reduction of $Sn^{4+}$as well as $Sb^{5+}$ however the reduction of $Sn^{4+}$ is more effective and therefore consequently results in decrease in the electrical resistivity to produce an excellent electrical properties of the film.

Associations between and Smartphone Use and Sugar-sweetened Beverage Intake among Korea Adolescents: The 13th Korea Youth Risk Behavior Survey (2017) (한국 청소년의 스마트폰 사용과 가당 음료 섭취의 관련성: 제13차 청소년건강행태조사를 기반으로)

  • Kim, Eunjung;Kim, Hae Ran
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.578-587
    • /
    • 2020
  • The purpose of this study was to provide information to prevent and manage the risk factors of adolescent health behavior by identifying the relationship between smartphone use and the intake of sugar-sweetened beverages of Korean adolescents. Data from the 2017 Korean Youth Risk Behavior Survey of 54,603 adolescents was used for this study. The study examined the variables related to general characteristics, smartphone use, and intake of sugar-sweetened beverages. Complex sample analysis was done by performing multivariate logistic regression analysis. Smartphone usage time (aOR = 2.19, 95%CI = 2.05-2.34) and smartphone use for communication (aOR = 1.51, 95%CI = 1.43-1.60) were associated with three or more times per week of SODA beverage intake. In addition, adolescents who experienced conflicts with family were associated with SODA beverage intake (aOR = 1.42, 95%CI = 1.33-1.51), conflict with friends was associated with sweet beverage intake (aOR = 1.39, 95%CI = 1.30-1.49), and study problems were associated with SODA beverage intake (aOR = 1.79, 95%CI = 1.54-2.07). Therefore, controlling the use of Smartphones in schools and homes and creating an environment in which communication skills can be learned can help adolescents reduce the intake of sugar-sweetened beverages. Positive relationships with family and friends, and appropriate management of academic stress can help reduce inappropriate health behaviors associated with smartphone use by adolescents.

Reclamation of the Closed/Abandoned Coal Mine Overburden Using Lime wastes from Soda Ash Production (부산석회를 활용한 휴ㆍ폐 석탄광산 폐기물의 안정화 및 식생복원)

  • 김휘중;양재의;옥용식;유경열;박병길;이재영;전상호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.37-47
    • /
    • 2004
  • In Korea, over three hundreds of the coal mines were closed or abandoned due to the depression of the mining industry since the late 1980s. Many of them locate in the steep mountain valleys and the coal mine wastes had been disposed without a proper treatment From these mines, enormous amounts of coal mine overburdens have been abandoned in the slopes and the ample amounts of acid mine drainage (AMD) from either portal or overburdens have been discharging directly to the streams, causing the detrimental effects on soil and water qualities. Objectives of this research were to reclaim the coal mine overburdens using the lime waste cake from the soda ash production by stabilizing the overburden slopes, introducing the vegetation alleviate the environmental problems caused by the closed coal mines. The percentages of the grass distribution ratio (%) and the surface coverage ($\textrm{cm}^2$) in each treatment plot were determined during June to August after seed spraying grasses such as orchard grass (Dactylis glomerata L), Kentucky Bluegrass (Poa pratensis L.) and Eulalia (Miscanthus sinensis Anderss) at the end of May. The grasses covered only 15.5 % of the coal overburden plot at the early stage but the coverage was increased with time to 33% in August. Growth of such grasses was enhanced with the combined treatments of lime waste and topsoil resulting in the increased surface coverage by the grasses. The Increment of the surface coverage from June to August was higher with lime waste treatments. The distribution percentages and surface coverage were highest when the lime wastes were treated at 25 % of the lime requirement. This might be related with the high salt contents in the hire wastes. Results demonstrated that the amounts of lime wastes at 25% of the lime requirement were sufficient for neutralizing the acidic coal overburden and introducing the re-vegetation. Either layering between the coal waste and topsoil or mixing with coal overburdens could be adopted as the lime waste treatment method. The combined treatment of lime wastes and topsoil was recommended for re-vegetation in the coal overburden slopes. The lime wastes from the soda ash production might have a potential to be recycled for the reclamation of the abandoned coal mines to alleviate the environmental problems associated with coal mine waste.

  • PDF

Titanium Dioxide Recovery from Soda-roasted Spent SCR Catalysts through Sulphuric Acid Leaching and Hydrolysis Precipitation (소다배소 처리된 탈질 폐촉매로부터 황산침출과 가수분해 침전반응에 의한 TiO2의 회수)

  • Kim, Seunghyun;Trinh, Ha Bich;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.48-54
    • /
    • 2020
  • Sulphuric acid (H2SO4) leaching and hydrolysis were experimented for the recovery of titanum dioxide (TiO2) from the water-leached residue followed by soda-roasting spent SCR catalysts. Sulphuric acid leaching of Ti was carried out with leachate concentration (4~8 M) and the others were fixed (temp.: 70 ℃, leaching time: 3 hrs, slurry density: 100 g/L, stirring speed: 500 rpm). For recovering of Ti from the leaching solution, hydrolysis precipitation was conducted at 100 ℃ for 2 hours in various mixing ratio (leached solution:distilled water) of 1:9 to 5:5. The maximum leachability was reached to 95.2 % in 6 M H2SO4 leachate. on the other hand, the leachability of Si decreased dramatically 91.7 to 3.0 % with an increase of H2SO4 concentration. Hydrolysis precipitation of Ti was proceeded with leaching solution of 8 M H2SO4 with the lowest content of Si. The yield of precipitation increased proportionally with a dilution ratio of leaching solution. Moreover, it increased generally by adding 0.2 g TiO2 as a precipitation seed to the diluted leaching solution. Ultimately, 99.8 % of TiO2 can be recovered with the purity of 99.46 % from the 1:9 diluted solution.