• Title/Summary/Keyword: snap property

Search Result 4, Processing Time 0.015 seconds

Improvement of mechanical properties of interior fabric using soluble micro-fiber and low melting PET (용출형 극세사와 저온 융착사를 이용한 인테리어 직물의 기계적 물성 개선)

  • Kwon, Yoon-Jung;Ahn, Young-Moo
    • Journal of Fashion Business
    • /
    • v.13 no.1
    • /
    • pp.82-90
    • /
    • 2009
  • This research was made to manufacture the fabric for interior uses by spinning a low melting mono 4 denier PET staple fiber with a soluble 1.4 denier fine PET fiber. The blended yarn has a thickness ranging from 10's to 14's, and the soluble PET fine fiber was dissolved to make a pore in the polymer. Thereby a snap property was decreased and a resilience property was improved to be suitable for a functional synthetic leather. In order to attain the optimum condition, a mechanical property according to fineness, and mixing ratio of low melting polymer, warp density, weft density and blending ratio, and a heat contraction ratio according to blending ratio were experimented. The warp density, 220 T/inch of fine denier PET and the weft density, 64 T/inch of thick denier PET were generated to 4/4 both twill weave fabric having constant tensile property and thickness.

A Study on the Snap-fit Design System in Injection Molding (사출성형에 있어서 스냅핏 설계 시스템에 관한 연구)

  • 강성남;허용정
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.1-5
    • /
    • 2001
  • One of the major advantages of using engineering plastics is ease of part assembly through a locking mechanism known as a snap fit. The typical snap fit involves a short cantilever beam with a projection at the free end. which slides over a one way ramp on the mating part to lock in place. The tightness of the mechanism is determined by the lateral interference of the two sliding members If too small they become loose and can't hold together. while if too large. excessive force can be generated. causing failure of the cantilever beam during the assembly operation. Therefore. the accurate determination of the force-deflection relationship for cantilever beams is a key element in snap fit design. And also. the process of injection molding should be considered when cantilever beam is designed. But it is not easy for novice designers to design them appropriately because of the profound knowledge related to injection molding. In this paper. an intelligent design program has been developed and proposed to improve a conventional empirical design method.

  • PDF

A Study on Flange Coupling Design of Polyethylene Corrugated Steel Pipe (PE 피복형 파형강관의 플랜지 이음부 설계에 관한 연구)

  • Kim, Tae-Kyu;Lee, Ho-Young;Yang, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.403-408
    • /
    • 2007
  • The concrete pipe(Hume, PC) and polyethylene(PE) pipe are usually used for dram pipe in local market. Hume pipe, however, is heavy and needs the high cost of construction and PC pipe has a disadvantage to easily occur the deformation by the outside pressure even though it is light and constructible. The corrugated steel pipe coated with polyethylene is used increasedly because it is durable, constructible and economical. However, it is not used for sewage or waste water because it is hard to guarantee the watertight property on the coupling part. In this study, we studied on the flange coupling and the method of its construction to guarantee the watertight property and easy to use. If the developed flange coupling and method are used on a construction field, the economical property, constructible property and structural safety can be guaranteed.

A Study on the Intelligent Design Method of Snap-fit in Injection Molded Part (사출제품에서 스냅핏의 지적 설계에 관한 연구)

  • 강성남;허용정
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.241-244
    • /
    • 2001
  • 스냅핏은 일종의 결속장치로서 흔히 플라스틱 부품들을 서로 체결하는데 이용되는데, 다른 결속장치에 비해 간편하고 생산품의 조립단가를 줄일 수 있고, 또한 분리력은 큰 반면에 결합력은 작게 만들 수 있는 장점을 가지고 있어 널리 사용된다. 스냅핏의 설계는 재료에 따른 물성(property) 및 구조적 강성(stiffness)이 설계 초기단계에서 고려되어야 하고, 또한 사출성형공정에서 스냅핏의 성형성도 예측되어야 한다. 그러나 스냅핏의 형상, 치수, 위치 등을 적절히 설계합성(synthesis)하고 적절한 재료를 선택하는 작업은 공정에 관한 종합적인 지식을 지원해 주는 합리적인 설계도구가 제공되지 못했던 이유로 사출 전문가의 오랜 기간 축적된 경험과 지식에만 전적으로 의존하여 왔다. 본 연구에서는 기존의 전문가에 의존해온 스냅핏 설계방법을 개선하기 위해 사출성형에 의해 제한되어지는 지식을 규칙베이스화하고 재료의 물성과 스냅핏의 형상 및 치수에 파라 스냅핏이 갖는 결합력, 분리력, 변형하중 및 허용언더컷 등을 출력하는 지적 설계 프로그램을 제안하였다.