• Title/Summary/Keyword: smoothing methods

Search Result 383, Processing Time 0.024 seconds

Comparative Analysis of TOA and TDOA method for position estimation of mobile station (이동국 위치 추정을 위한 TOA와 TDOA방법의 비교 분석)

  • 윤현성;호인석;이장호;변건식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.167-172
    • /
    • 2000
  • This paper is aimed at developing an location tracking for mobile station employing currently available mobile communication network of cellular phone and PCS(Personal Communication System). When the location tracking of mobile stations is in services, the services such as Emergency-119, crime investigation, effective urban traffic management or the safety protection of Alzheimer's patients, ran be available. This paper is to track the mobile station in communication network in NLOS environment. To achieve reduction of the standard noise, Kalman filter is used. In terms of the distance, positions are located by using TOA and TDOA methods in the environment that removes NLOS bias in the measured data. And then smoothing method is used. to achieve reduction of the position error values

  • PDF

Changes of the Forest Types by Climate Changes using Satellite imagery and Forest Statistical Data: A case in the Chungnam Coastal Ares, Korea (위성영상과 임상통계를 이용한 충남해안지역의 기후변화에 따른 임상 변화)

  • Kim, Chansoo;Park, Ji-Hoon;Jang, Dong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.523-538
    • /
    • 2011
  • This study analyzes the changes in the surface area of each forest cover, based on temperature data analysis and satellite imagery as the basic methods for the impact assessment of climate change on regional units. Furthermore, future changes in the forest cover are predicted using the double exponential smoothing method. The results of the study have shown an overall increase in annual mean temperature in the studied region since 1990, and an especially increased rate in winter and autumn compared to other seasons. The multi-temporal analysis of the changes in the forest cover using satellite images showed a large decrease of coniferous forests, and a continual increase in deciduous forests and mixed forests. Such changes are attributed to the increase in annual mean temperature of the studied regions. The analysis of changes in the surface area of each forest cover using the statistical data displayed similar tendencies as that of the forest cover categorizing results from the satellite images. Accordingly, rapid changes in forest cover following the increase of temperature in the studied regions could be expected. The results of the study of the forest cover surface using the double exponential smoothing method predict a continual decrease in coniferous forests until 2050. On the contrary, deciduous forests and mixed forests are predicted to show continually increasing tendencies. Deciduous forests have been predicted to increase the most in the future. With these results, the data on forest cover can be usefully applied as the main index for climate change. Further qualitative results are expected to be deduced from these data in the future, compared to the analyses of the relationship between tree species of forest and climate factors.

Effects of Speckle Filtering on Synthetic Aperture Radar (SAR) Imagery (레이더 영상자료의 Speckle 필터링 효과)

  • 이규성
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.155-168
    • /
    • 1996
  • Speckle noise has been a primary concern to many applications of synthetic aperture radar (SAR) imagery. In recent years, several satellites with radar imaging systems were launched and the use of SAR data are expected to be increased rapidly The objectives of this study are to provide introductory understanding on radar speckle filtering and to compare the effects of several filtering methods that are relatively unknown to user community. Two study sites were extracted from the RADARSAT SAR data obtained over the suburban areas near Seoul. The study sites include relatively homogeneous cover types, such as reservoir, parking lot, rice pad, and deciduous forest. Five filters (mean filter, median filter, sigma filter, local statistics filter, and autocorrelation filter) were applied to the SAR imagery and their effects were evaluated from the aspects of both image smoothing and edge preservation. In overall, the evaluation results indicate that the local statistics filter and autocorrelation filter, that are based on a speckle model, are more effective to suppress speckle within homogeneous cover type while maintaining the edge sharpness between cover types.

Area-to-Area Poisson Kriging and Spatial Bayesian Analysis in Mapping of Gastric Cancer Incidence in Iran

  • Asmarian, Naeimehossadat;Jafari-Koshki, Tohid;Soleimani, Ali;Ayatollahi, Seyyed Mohammad Taghi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.10
    • /
    • pp.4587-4590
    • /
    • 2016
  • Background: In many countries gastric cancer has the highest incidence among the gastrointestinal cancers and is the second most common cancer in Iran. The aim of this study was to identify and map high risk gastric cancer regions at the county-level in Iran. Methods: In this study we analyzed gastric cancer data for Iran in the years 2003-2010. Area-to-area Poisson kriging and Besag, York and Mollie (BYM) spatial models were applied to smoothing the standardized incidence ratios of gastric cancer for the 373 counties surveyed in this study. The two methods were compared in term of accuracy and precision in identifying high risk regions. Result: The highest smoothed standardized incidence rate (SIR) according to area-to-area Poisson kriging was in Meshkinshahr county in Ardabil province in north-western Iran (2.4,SD=0.05), while the highest smoothed standardized incidence rate (SIR) according to the BYM model was in Ardabil, the capital of that province (2.9,SD=0.09). Conclusion: Both methods of mapping, ATA Poisson kriging and BYM, showed the gastric cancer incidence rate to be highest in north and north-west Iran. However, area-to-area Poisson kriging was more precise than the BYM model and required less smoothing. According to the results obtained, preventive measures and treatment programs should be focused on particular counties of Iran.

A Log-Energy Feature Normalization Method Using ARMA Filter (ARMA 필터를 이용한 로그 에너지 특징의 정규화 방법)

  • Shen, Guang-Hu;Jung, Ho-Youl;Chung, Hyun-Yeol
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.10
    • /
    • pp.1325-1337
    • /
    • 2008
  • The difference of environments between training and recognition is the major reason of degradation of speech recognition. To solve this mismatch of environments, various noise processing methods have been studied. Among them, ERN(log-Energy dynamic Range Normalization) and SEN(Silence Energy Normalization) for normalization of log energy features show better performance than others. However, these methods have a problem that they can hardly achieve normalization for the relatively higher values of log energy features and the environmental mismatch caused by this problem becomes bigger especially in low SNR environments. To solve these problems, we propose applying ARMA filter as post-processing for smoothing log energy features by calculating the moving average in auto-regression scheme. From the recognition results conducted on Aurora 2.0 DB, the proposed method shows improved recognition results comparing with conventional methods.

  • PDF

Gaussian Filtering Effects on Brain Tissue-masked Susceptibility Weighted Images to Optimize Voxel-based Analysis (화소 분석의 최적화를 위해 자화감수성 영상에 나타난 뇌조직의 가우시안 필터 효과 연구)

  • Hwang, Eo-Jin;Kim, Min-Ji;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.4
    • /
    • pp.275-285
    • /
    • 2013
  • Purpose : The objective of this study was to investigate effects of different smoothing kernel sizes on brain tissue-masked susceptibility-weighted images (SWI) obtained from normal elderly subjects using voxel-based analyses. Materials and Methods: Twenty healthy human volunteers (mean $age{\pm}SD$ = $67.8{\pm}6.09$ years, 14 females and 6 males) were studied after informed consent. A fully first-order flow-compensated three-dimensional (3D) gradient-echo sequence ran to obtain axial magnitude and phase images to generate SWI data. In addition, sagittal 3D T1-weighted images were acquired with the magnetization-prepared rapid acquisition of gradient-echo sequence for brain tissue segmentation and imaging registration. Both paramagnetically (PSWI) and diamagnetically (NSWI) phase-masked SWI data were obtained with masking out non-brain tissues. Finally, both tissue-masked PSWI and NSWI data were smoothed using different smoothing kernel sizes that were isotropic 0, 2, 4, and 8 mm Gaussian kernels. The voxel-based comparisons were performed using a paired t-test between PSWI and NSWI for each smoothing kernel size. Results: The significance of comparisons increased with increasing smoothing kernel sizes. Signals from NSWI were greater than those from PSWI. The smoothing kernel size of four was optimal to use voxel-based comparisons. The bilaterally different areas were found on multiple brain regions. Conclusion: The paramagnetic (positive) phase mask led to reduce signals from high susceptibility areas. To minimize partial volume effects and contributions of large vessels, the voxel-based analysis on SWI with masked non-brain components should be utilized.

Optimized Neural Network Weights and Biases Using Particle Swarm Optimization Algorithm for Prediction Applications

  • Ahmadzadeh, Ezat;Lee, Jieun;Moon, Inkyu
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1406-1420
    • /
    • 2017
  • Artificial neural networks (ANNs) play an important role in the fields of function approximation, prediction, and classification. ANN performance is critically dependent on the input parameters, including the number of neurons in each layer, and the optimal values of weights and biases assigned to each neuron. In this study, we apply the particle swarm optimization method, a popular optimization algorithm for determining the optimal values of weights and biases for every neuron in different layers of the ANN. Several regression models, including general linear regression, Fourier regression, smoothing spline, and polynomial regression, are conducted to evaluate the proposed method's prediction power compared to multiple linear regression (MLR) methods. In addition, residual analysis is conducted to evaluate the optimized ANN accuracy for both training and test datasets. The experimental results demonstrate that the proposed method can effectively determine optimal values for neuron weights and biases, and high accuracy results are obtained for prediction applications. Evaluations of the proposed method reveal that it can be used for prediction and estimation purposes, with a high accuracy ratio, and the designed model provides a reliable technique for optimization. The simulation results show that the optimized ANN exhibits superior performance to MLR for prediction purposes.

Barrier Option Pricing with Model Averaging Methods under Local Volatility Models

  • Kim, Nam-Hyoung;Jung, Kyu-Hwan;Lee, Jae-Wook;Han, Gyu-Sik
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.84-94
    • /
    • 2011
  • In this paper, we propose a method to provide the distribution of option price under local volatility model when market-provided implied volatility data are given. The local volatility model is one of the most widely used smile-consistent models. In local volatility model, the volatility is a deterministic function of the random stock price. Before estimating local volatility surface (LVS), we need to estimate implied volatility surfaces (IVS) from market data. To do this we use local polynomial smoothing method. Then we apply the Dupire formula to estimate the resulting LVS. However, the result is dependent on the bandwidth of kernel function employed in local polynomial smoothing method and to solve this problem, the proposed method in this paper makes use of model averaging approach by means of bandwidth priors, and then produces a robust local volatility surface estimation with a confidence interval. After constructing LVS, we price barrier option with the LVS estimation through Monte Carlo simulation. To show the merits of our proposed method, we have conducted experiments on simulated and market data which are relevant to KOSPI200 call equity linked warrants (ELWs.) We could show by these experiments that the results of the proposed method are quite reasonable and acceptable when compared to the previous works.

A Power-Aware Scheduling Algorithm with Voltage Transition Overhead (전압 변경 오버헤드를 고려한 전력 관리 알고리즘)

  • Kweon, Hyek-Seong;Ahn, Byoung-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.5
    • /
    • pp.641-650
    • /
    • 2008
  • As portable devices are used widely, power management algorithm is essential to extend battery use time on small-sized battery power. Although many methods have been proposed, they assumed the voltage transition overhead was negligible or was considered partially. However, the voltage transition overhead might not guarantee to schedule real-time tasks in portable multimedia systems. This paper proposes the adaptive power-aware algorithm to minimize the power consumption by considering the voltage transition overhead. It selects only a few discrete frequencies from the whole frequencies of a system and adjusts the interval between two consecutive frequencies based on the system utilization to reduce the number of frequency change. This algorithm saves the power consumption about 10 to 25 percent compared to a CC RT-DVS method and a frequency-smoothing method.

  • PDF

A Model and Approaches for Smoothing Peaks of Traction Energy in Timetabling (동력운전 분산 시각표 작성을 위한 수리모형 및 해법)

  • Kim, Kyung-Min;Oh, Seog-Moon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.1018-1023
    • /
    • 2009
  • This paper describes a reduction in the peaks of traction energy for metro railways in timetabling. We develope a mixed integer programming (MIP) model, which minimizes the number of trains running simultaneously. We suggest two approaches. In the first approach, we use the commercial MIP solver, CPLEX. In the second approach, we propose a heuristic algorithm. We apply both methods to the current daily timetable of the Korea Metropolitan Subway. We determine an optimal solution, which results in an improvement of approximately 25% over the current timetable.