• Title/Summary/Keyword: smooth muscle cell

Search Result 396, Processing Time 0.032 seconds

Characteristics of CCh-activated Nonselective Cation Channel in Gastric Smooth Muscle Cells.

  • Kang, Tong-Mook;Kim, Young-Chul;Rhee, Poong-Lyul;So, In-Suk;Rhee, Jong-Chul;Uhm, Dae-Yong;Kim, Ki-Whan
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.26-26
    • /
    • 1997
  • In the present study, we recorded CCh-activated nonselective cation (NSC) current in guinea-pig gastric smooth muscle cells and investigated the characteristics of the current. In whole-cell voltage-clamp mode, CCh activated NSC current. The same NSC current could be activated by internal dialysis of GTP${\gamma}$S.(omitted)

  • PDF

Comparative Study of the Inhibitory Effect of Luteolin and Luteolin-7-Glucoside on Rat Aortic Vascular Smooth Muscle Cell Proliferation

  • Kim, Jin-Ho;Kim, Soo-Yeon;Lim, Yong;Pyo, Hyeong-Bae;Park, Byeoung-Soo;Yoo, Hwan-Soo;Yun, Yeo-Pyo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.102.2-103
    • /
    • 2003
  • It has been previously reported that luteolin and luteolin-7-glucoside displayed the potent anti-oxidant and anti-inflammatory effects, which have also been successful in reducing vascular smooth muscle cells(VSMCs) proliferation. In this study, a possible anti-proliferative effect and its mechanism on rat aortic VSMCs by luteolin and luteolin-7-glucoside were investigated. Luteolin significantly inhibited the platelet-derived growth factor(PDGF)-BB-induced proliferation of rat aortic VSMCs. While luteolin-7-glucoside weakly inhibited the proliferation. (omitted)

  • PDF

Blockade of Urotensin II Receptor Prevents Vascular Dysfunction

  • Kim, Young-Ae;Lee, Dong Gil;Yi, Kyu Yang;Lee, Byung Ho;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.523-528
    • /
    • 2016
  • Urotensin II (UII) is a potent vasoactive peptide and mitogenic agent to induce proliferation of various cells including vascular smooth muscle cells (VSMCs). In this study, we examined the effects of a novel UII receptor (UT) antagonist, KR-36676, on vasoconstriction of aorta and proliferation of aortic SMCs. In rat aorta, UII-induced vasoconstriction was significantly inhibited by KR-36676 in a concentration-dependent manner. In primary human aortic SMCs (hAoSMCs), UII-induced cell proliferation was significantly inhibited by KR-36676 in a concentration-dependent manner. In addition, KR-36676 decreased UII-induced phosphorylation of ERK, and UII-induced cell proliferation was also significantly inhibited by a known ERK inhibitor U0126. In mouse carotid ligation model, intimal thickening of carotid artery was dramatically suppressed by oral treatment with KR-36676 (30 mg/kg/day) for 4 weeks compared to vehicle-treated group. From these results, it is indicated that KR-36676 suppress UII-induced proliferation of VSMCs at least partially through inhibition of ERK activation, and that it also attenuates UII-induced vasoconstriction and vascular neointima formation. Our study suggest that KR-36676 may be an attractive candidate for the pharmacological management of vascular dysfunction.

Carcinosarcoma of the Esophagus with Cartilagenous Production -A Case Report - (연골 분화를 보인 식도 암육종 -1례 보고-)

  • 양수호;이철범;한동수;안명주;백홍규;함시영;정원상;강정호;지행옥
    • Journal of Chest Surgery
    • /
    • v.31 no.4
    • /
    • pp.422-426
    • /
    • 1998
  • Progressive dysphagia in a 53 year old man was caused by a giant polypoid tumor in the lower intrathoracic esophagus. Radical transthoracic esophagectomy and esophagogastrostomy were carried out. Microscopic examination of the tumor revealed a true carcinosarcoma, composed of a mixture of basaloid squamous cell carcinoma and chondrosarcoma with multiple cartilagenous productions. Carcinoma metastases were found in the subcarinal and perigastric lymph nodes. Immunohistochemically, squamous area displayed strong positive to cytokeratin, and basaloid area showed positive immunoreaction to high molecular weight cytokeratin (34${\beta}$E12). Spindle cell sarcoma reacted to vimentin and smooth muscle actin. Chondrosarcomatous area reacted to vimentin and S-100 protein. He received postoperative chemotherpy and radiotherapy. He has been free of disease for 11 months.

  • PDF

Effects of Prostaglandin $E_2$ on the Spontaneous Contractions and Electrical Activities of the Antral Circular Muscle in Guinea-pig Stomach

  • Kim, Jong-Yoon;Kim, Sung-Joon;Kang, Tong-Mook;Lee, Sang-Jin;Jun, Jae-Yeoul;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.361-368
    • /
    • 1998
  • The spontaneous contractions of gastric smooth muscles are regulated by slow waves, which are modulated by both nervous system and humoral agents. This study was designed to examine the effects of prostaglandin $E_2$ ($PGE_2$) on the contractile and electrical activities of antral smooth muscles in guinea-pig stomach, using an intracellular recording technique. To elucidate the underlying mechanism for its effect on contractility, ionic currents were also measured using a whole-cell patch clamp method. The basal tone by $PGE_2$ was variable, whereas the magnitude of phasic contractions was reduced ($19.0{\pm}2.1%$, n=19). The resting membrane potentials were hyperpolarized ($-4.4{\pm}0.5%$ mV, n=10), and plateau potentials were lowered ($-2.9{\pm}0.5%$ mV, n=10). In most cases, however, the initial peak potentials of slow waves were depolarized more by $PGE_2$ than those of control. The frequency of the slows wave was increased from $5.7{\pm}0.2$ cycles/min to $6.5{\pm}0.2$ (n=22). Voltage-operated $Ca^{2+}$ currents were decreased by $PGE_2$ (n=5). Voltage-operated $K^+$ currents, both Ca-dependent and Ca-independent, were increased (n=5). These results suggest that $PGE_2$ plays an important role in the modulation of gastric smooth muscle activities, and its inhibitory effects on the contractility and activities of slow waves are resulted from both decrease of $Ca^{2+}$ currents and increase of $K^+$ currents.

  • PDF

Gamma-aminobutyric acid-salt attenuated high cholesterol/high salt diet induced hypertension in mice

  • Son, Myeongjoo;Oh, Seyeon;Lee, Hye Sun;Choi, Junwon;Lee, Bae-Jin;Park, Joung-Hyun;Park, Chul Hyun;Son, Kuk Hui;Byun, Kyunghee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.27-38
    • /
    • 2021
  • Excessive salt intake induces hypertension, but several gamma-aminobutyric acid (GABA) supplements have been shown to reduce blood pressure. GABA-salt, a fermented salt by L. brevis BJ20 containing GABA was prepared through the post-fermentation with refined salt and the fermented GABA extract. We evaluated the effect of GABA-salt on hypertension in a high salt, high cholesterol diet induced mouse model. We analyzed type 1 macrophage (M1) polarization, the expression of M1 related cytokines, GABA receptor expression, endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) proliferation, and medial thicknesses in mice model. GABA-salt attenuated diet-induced blood pressure increases, M1 polarization, and TNF-α and inducible nitric oxide synthase (NOS) levels in mouse aortas, and in salt treated macrophages in vitro. Furthermore, GABA-salt induced higher GABAB receptor and endothelial NOS (eNOS) and eNOS phosphorylation levels than those observed in salt treated ECs. In addition, GABA-salt attenuated EC dysfunction by decreasing the levels of adhesion molecules (E-selectin, Intercellular Adhesion Molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1]) and of von Willebrand Factor and reduced EC death. GABA-salt also reduced diet-induced reductions in the levels of eNOS, phosphorylated eNOS, VSMC proliferation and medial thickening in mouse aortic tissues, and attenuated Endothelin-1 levels in salt treated VSMCs. In summary, GABA-salt reduced high salt, high cholesterol diet induced hypertension in our mouse model by reducing M1 polarization, EC dysfunction, and VSMC proliferation.

Inhibitory Effects of Verapamil and TMB-8 on Tonic Contraction Are Accompanied by Inhibition of Phospholipase C Activity in Intact Gastric Smooth Muscle Cells

  • Sim, Sang-Soo;Yoon, Shin-Hee;Hahn, Sang-June;Rhie, Duck-Joo;Jo, Yang-Hyeok;Kim, Myung-Suk
    • The Korean Journal of Physiology
    • /
    • v.29 no.1
    • /
    • pp.29-37
    • /
    • 1995
  • Gastric smooth muscle of guinea pigs was used to investigate whether the inhibitory effect of calcium antagonists on tonic contraction was accompanied by inhibition of phospholipase C activity. Tonic contraction and $[^{3}H]$ inositol phosphate (IP) formation in response to acetylcholine were measured after pretreatment with verapamil, nifedipine, 8-(N,N-diethylamino)octyl 3,4,5-trimethoxy-benzoate (TMB-8) or EGTA. Verapamil $(10\;{\mu}M)$, TMB-8 $(10\;{\mu}M)$ or EGTA (2 mM) significantly inhibited acetylcholine $(1\;{\mu}M)$-stimulated tonic contraction but nifedipine (100 nM) did not. Acetylcholine dose-dependently increased the formation of $[^{3}H]IP$. This effect was not observed in the presence of 2 mM EGTA. Both verapamil and TMB-8 significantly inhibited $[^{3}H]IP$ formation induced by $10\;{\mu}M$ acetylcholine, whereas nifedipine did not. In a subsequent study, we measured phospholipase C activity in gastric muscle cell homogenate and in permeabilized cells to determine whether calcium antagonists could inhibit the activity directly. The calcium antagonists did not change the phospholipase C activity of the cell homogenate or the permeabilized cells. But EGTA decreased phospholipase C activity by 50%. These results suggest that the inhibitory effects of verapamil and TMB-8 on acetylcholine-stimulated tonic contraction may be accompanied by inhibition of phospholipase C activity.

  • PDF

Electrophysiological and Mechanical Characteristics in Human Ileal Motility: Recordings of Slow Waves Conductions and Contractions, In vitro

  • Ryoo, Seung-Bum;Oh, Heung-Kwon;Moon, Sang Hui;Choe, Eun Kyung;Yu, Sung A;Park, Sung-Hye;Park, Kyu Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.533-542
    • /
    • 2015
  • Little human tissue data are available for slow waves and migrating motor complexes, which are the main components of small bowel motility. We investigated the electrophysiological and mechanical characteristics of human ileal motility, in vitro. Ileum was obtained from patients undergoing bowel resection. Electrophysiological microelectrode recordings for membrane potential changes and mechanical tension recordings for contraction from smooth muscle strips and ileal segments were performed. Drugs affecting the enteric nervous system were applied to measure the changes in activity. Slow waves were detected with a frequency of 9~10/min. There were no cross-sectional differences in resting membrane potential (RMP), amplitude or frequency between outer and inner circular muscle (CM), suggesting that electrical activities could be effectively transmitted from outer to inner CM. The presence of the interstitial cell of Cajal (ICC) at the linia septa was verified by immunohistochemistry. Contractions of strips and segments occurred at a frequency of 3~4/min and 1~2/min, respectively. The frequency, amplitude and area under the curve were similar between CM and LM. In segments, contractions of CM were associated with LM, but propagation varied with antegrade and retrograde directions. Atropine, $N^W$-oxide-L-arginine, and sodium nitroprusside exhibited different effects on RMP and contractions. There were no cross-sectional differences with regard to the characteristics of slow waves in CM. The frequency of contractions in smooth muscle strips and ileal segments was lower than slow waves. The directions of propagation were diverse, indicating both mixing and transport functions of the ileum.