• Title/Summary/Keyword: smoke movement

Search Result 135, Processing Time 0.021 seconds

A Study on the Research Trends of Smoke Movement in Fire (화재 시 연기거동 관련 연구 동향에 관한 조사)

  • Kim, Hyung-Jin;Shin, Yi-Chul;Hwang, Eun-Kyung;Hwang, Keum-Suk;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.317-320
    • /
    • 2008
  • Smoke is recognized as the major killer in fire situation. smoke often migrate to building locations remote the fire space, threatening life and elevator shafts frequently become smoke-logged, there by blocking evacuation and inhibiting rescue and fire fighting. It is the aim of this study to investigate and analyze the research trends of smoke movement in Fire.

  • PDF

An Experimental and Analytical Studies on the Smoke Movement by Fire (화재시 연기거동에 관한 실험 및 해석적 연구)

  • Shin, Yi-Chul;Kim, Soo-Young;Lee, Ju-Hee;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.15-18
    • /
    • 2008
  • A study on the fire and smoke behavior on experiments and analysis through STAR-CD in using about behavior analysis of the smoke. Kerosene of 3L in using on the experimental garden of 30cm in diameter same applies to heat release rate(HRR), buoyant force by Plume can be calculated at a rate of 1m/s. The result of experiment in average of velocity were 0.29m/s, and interpreted result were 0.28m/s. Besides, it is proved by interpreted that behavior of smoke movement can be not observed in the experiment. After smoke is Plume increased, ceiling-jet in formation being descend in smoke layer will be more thick smoke layer, and then vertical wall is collapsed in formation of wall-jet being descend. It is defined that smoke layer is more thick through descending course in wall-jet and ceiling-jet.

  • PDF

An Experimental Study of Smoke Movement in Tunnel Fires with Aspect Ratio of Tunnel Cross Section (터널 화재시 터널 단면의 종횡비에 따른 연기 거동에 관한)

  • Lee, Sung-Ryong;Ryou, Hong-Sun;Kime, Choong-Ik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.115-120
    • /
    • 2003
  • In this study, smoke movement in tunnel fires was investigated with various aspect ratio(0.5, 0.667, 1.0, 1.5, 2.0) of tunnel cross section. Reduced-scale experiments were carried out under the Froude scaling using 8.27 kW ethanol pool fire. Temperatures were measured under the ceiling and vertical direction along the center of the tunnel. Smoke front velocity and temperature decrease rate were reduced as higher aspect ratio of the tunnel cross-section. Smoke movement was evaluated by analysis of vertical temperature distribution 3 m downstream from the fire source. Elevation of smoke interface according to N percent rule was under about 60% of tunnel height.

  • PDF

An Experimental Study of Smoke Movement in Tunnel Fires (터널화재시 연기 거동에 관한 실험적 연구)

  • Lee, Sung-Ryong;Kim, Choong-Ik;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.121-126
    • /
    • 2001
  • In this study, reduced-scale experiments were conducted to understand smoke movements in tunnel fires with the natural ventilation. The 1/20 scale experiments were conducted under the Froude scaling since the smoke movement in tunnels is governed by buoyancy force. Six cases of experiments(pool diameter is 6.5cm, 7.3cm, 8.3cm, 10cm, l2.5cm and l5.4cm), in which vertical vents positioned 1m from the fire source symmetrically, were conducted in order to evaluate the effect of the vent on smoke movement. In case of heat release rate under 2MW, smoke front reached to the tunnel exit about 20 see delayed with ventilation and the smoke velocity was proportional to the power of the heat release rate. Temperature after the vent was lower than without vent. In case of l5.4cm pool, the temperature difference was about $50^{\circ}C$. It was confirmed that the thickness of smoke layer was maintained uniformly under the 35% height of tunnel through the visualized smoke flow by a laser sheet and the digital camcoder.

  • PDF

An Experimental Study on the Effect of the Balcony on the Vertical Smoke Movement of the High Rise Building (고층건물의 수직방향 연기거동에 미치는 발코니의 영향에 관한 실험적 연구)

  • Yang Seung-Shin;Kim Sung-Chan;Ryou Hong-Sun;Shim Sang-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.42-48
    • /
    • 2005
  • The present study investigates the effect of balcony on external smoke movement of high rise building through the fire tests of the 1/10 reduced model scale using Froude scaling. A hexane pool fire is used to examine the smoke movement for various opening sizes of balcony and temperature distributions are measured by T-type thermocouples. Also, hydrogen bubble technique is applied to visualize the smoke movement near the balcony. Measured temperatures of the closed balcony is 2.5 times higher than those of the open balcony because the external smoke in case of the closed balcony rise along the vertical wall. The maximum vertical temperature of partially closed balcony is similar with fully closed balcony and mean temperature inside of balcony increases as opening size of balcony decreases. The experimental results show that the balcony space plays an important roles in preventing fire propagation and cooling of smoke layer. In order to ensure the fire safety in high rise building design, a series of systematic researches are required to examine the various type of balconies.

A Numerical Study of Radiation Effect under Smoke Movement in Room Fire (실내화재에서 연기거동에 미치는 복사영향에 대한 수치해석적 연구)

  • 정진용;유홍선;홍기배
    • Fire Science and Engineering
    • /
    • v.14 no.3
    • /
    • pp.6-12
    • /
    • 2000
  • This paper describes the smoke movement of a fire field model based on a self-developed SMEP(Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of compartment space containing the radiation effect under smoke movement in room fire. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon $ turbulence model with buoyancy term. Also it solves the radiation equation using the discrete ordinates method. The result of the calculated smoke temperature containing radiation effect has shown reasonable agreement compared with the experimental data. On the other hand, a difference of a lot was found between the temperature predicted by the SMEP with only convection effect and obtained by the experimental result. This seems to come from the radiation effect of $H_2$O and $CO_2$ gas under smoke productions. Thus, the consideration of the radiation effect under smoke in fire may be necessary in order to produce more realistic result.

  • PDF

An Experimental Study of Smoke Movement in Tunnel Fires with Natural Ventilation (터널화재시 자연환기에 의한 연기거동에 관한 실험적 연구)

  • 김충익;유홍선;이성룡;박현태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.247-253
    • /
    • 2002
  • In this study, reduced-scale experiments were conducted to analyze smoke movement in tunnel fire with roof vent. The 1/20 scale experiments were carried out under the Froude scaling using gasoline pool fire ranging from 7.3 to 15.4 cm in diameter with total heat release rate from 1.0 to 8.46kw. In case of 1 m high vent, smoke front reached to the tunnel exit at about 16 sec delayed with ventilation. The delay time grew longer with the vent height. The temperature after the vent was lower than that without the vent. The exit temperature declined maximum of $20^{\circ}C$ after passing the vent. It was confirmed that the thickness of smoke layer was maintained uniformly under the 25% height of the tunnel through the visualized smoke now by a laser sheet and the digital camcorder.

An Experimental and Analytical Studies on the Smoke Movement by Fire in High Rise Building (초고층 건축물의 화재 시 피난로 연기거동에 관한 실험 및 해석적 연구)

  • Shin, Yi-Chul;Kim, Soo-Young;Lee, Ju-Hee;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.11-14
    • /
    • 2008
  • A study on the fire and smoke behavior on experiments and analysis through STAR-CD in using about behavior analysis of the smoke. Kerosene of 3L in using on the experimental garden of 30cm in diameter same applies to heat release rate(HRR), buoyant force by Plume can be calculated at a rate of 1m/s. The result of experiment in average of velocity were 0.29m/s, and interpreted result were 0.28m/s. Besides, it is proved by interpreted that behavior of smoke movement can be not observed in the experiment. After smoke is Plume increased, ceiling-jet in formation being descend in smoke layer will be more thick smoke layer, and then vertical wall is collapsed in formation of wall-jet being descend. It is defined that smoke layer is more thick through descending course in wall-jet and ceiling-jet.

  • PDF

Experiments of Smoke Behavior in an Underground Subway Station (지하역사에서의 화재연기거동 실험)

  • Kim, Dong-Hyeon;Jang, Yong-Jun;Park, Won-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.67-73
    • /
    • 2007
  • Experiments were carried out to investigate smoke movement in platform of a subway station which currently is in service in Pusan, the second largest city in Korea. The recently constructed underground station of the "bank type" (two platforms on both sides of track) which is the popular layout of platforms in Korea, is chosen in Pusan. The smoke generator and heater are used for simulating the smoke movement at the fire break in the platform located in the 2nd basement of the station. Video recordings were used to monitor smoke lowering. In this study, the movements of smoke in the underground station are investigated under various smoke-control operating modes. Three tests wire conducted according to its operating mode of the ventilation systems in the platform: no operation of any ventilation systems, smoke extraction mode in occurrence of fire (presently running mode) and full capacity of smoke extraction where all vents are activated in the platform. The results can be used for comparing with the numerical prediction results of fire subway stations.

An Experimental Study of Smoke Movement in Tunnel Fires with a Vertical Shaft (수직갱이 설치된 터널내 화재시 연기거동에 관한 실험적 연구)

  • 이성룡;유홍선;김충익
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.135-141
    • /
    • 2004
  • The present paper concerns a smoke movement in a tunnel fire with a vertical shaft. The model tunnel measured 13.4m long, 0.4m wide and 0.4m high. The cross section is 1: 20 of a full scale tunnel. Ethanol was used as a fuel. The fire size in model tests varied from 1.35 kW to 13.37 kW, which corresponds to full scale fires of 2.41 to 23.91 MW. Smoke front velocity and temperatrue were decreased due to the vertical shaft install. Temperature was reduced maximum about 2$0^{\circ}C$ at ceiling and about 23$^{\circ}C$ at vertical position. CO concentration was reduced as the vent width widened. When vent width was more than 15 cm, CO concentration was not reached 100 ppm. Descent degree of the smoke layer was confirmed through the visualization.