• Title/Summary/Keyword: smectic LC

Search Result 17, Processing Time 0.038 seconds

High Speed Displays Based on a Nonchiral Smectic C Liquid Crystal in an Antiparallel Planar Geometry

  • Jeong, Cherl-Hyun;Na, Jun-Hee;Yoon, Tae-Young;Yu, Chang-Jae;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.571-574
    • /
    • 2005
  • We demonstrated a high speed liquid crystal (LC) display mode based on a nonchiral smectic C LC in an antiparallel planar geometry. In this antiparallel planar nonchiral smectic C (APNSC) LC mode, analog gray scales and wide viewing properties are achieved using a stepwise thermal annealing process (STAP). Because of an initially stable LC alignment in large area through the STAP, the APNSC LC mode exhibits the characteristics of fast response and high contrast ratio. This new APNSC mode is suitable for processing the dynamic image at a video rate in the next-generation LCDs.

  • PDF

Electro-Optic Characteristics of a Nonchiral Smectic C Liquid Crystal Display Mode in a Twisted Geometry

  • Jeong, Cherl-Hyun;Yu, Chang-Jae;Choi, Yoon-Seuk;Jung, Min-Sik;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.567-570
    • /
    • 2003
  • We demonstrated a fast liquid crystal (LC) display mode based on a nonchiral smectic C LC in a twisted geometry. In this twisted nonchiral smectic C (TNSC) LC mode, the analog gray scales and wide viewing properties are achieved. The continuous gray scales in the TNSC LC mode are obtained in a dielectrically driving scheme as those in the nematic mode.

  • PDF

The Physical Properties of Thermotropic Side-Chain Triblock Copolymers of n-Butyl Acrylate and a Comonomer with Azobenzene Group

  • Dan, Kyung-Sik;Kim, Byoung-Chul;Han, Yang-Kyoo
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.313-318
    • /
    • 2009
  • The side chain liquid crystal triblock copolymers (TBCs), which underwent phase transitions below their decomposition temperature, were prepared by copolymerization of poly(n-butyl acrylate) and a comonomer containing the mesogenic azobenzene group. The physical properties of TBCs in the distinctive transition temperature ranges were investigated in terms of the liquid crystal (LC) content in the copolymers. The phase transition temperatures traced optically, thermally and rheologically were well coincided one another and clearly exhibited the phase transition of smectic-nematic-isotropic with increasing temperature. In the smectic phase, increasing temperature made the liquid crystal system more elastic, but viscosity (${\eta}'$) remained almost constant. In the nematic phase, increasing temperature abruptly decreased ${\eta}'$ and G', ultimately leading to isotropic phase. Both smectic and nematic phases exhibited Bingham viscosity behavior but the former gave much greater yield stress at the same LC content.

A Fast Response Smectic LCD using Induced Polarization

  • Mochizuki, Akihiro
    • Journal of Information Display
    • /
    • v.6 no.3
    • /
    • pp.6-11
    • /
    • 2005
  • In this paper, a general performance of the PSS-LCD or Polarization Shielded Smectic Liquid Crystal Display is discussed. This smectic base LCD does not use any spontaneous polarization, but uses induced polarization just sa me with current nematic base LCDs. Specific initial molecular alignment as well as specific cell design realizes ext remely fast optical response speed with native wide viewing angle. Moreover, this performance is provided by full compatible electronics for current conventional LCDs. A general performance of the PSS-LCD is introduced herein.

Electra-Optic Effect of Nonchiral Smectic C Liquid Crystal Mode with Negative Dielectric Anisotropy

  • Yu, Chang-Jae;Jang, Eun-Je;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.467-470
    • /
    • 2002
  • We report on an analog electro-optic effect in a nonchiral smectic C (NSC) liquid crystal (LC) mode with negative dielectric anisotropy in a transverse electrode configuration. Two-dimensional numerical simulations are executed to evaluate the display performances. The analog gray scales in the NSC LC mode are obtained in a dielectrically driving scheme.

  • PDF

Synthesis and Characterization of Tetrathiafulvalene-Based Smectic Liquid Crystals

  • Wang, Lei;Kim, Young-Gook;Jeong, Kwang-Un;Lee, Myong-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1389-1392
    • /
    • 2009
  • A series of new symmetric TTF derivatives were designed and synthesized. This facile synthetic method provides an opportunity to prepare TTF-based LC candidates. This series of compounds exhibited smectic A phase based on coplanar TTF core. One of the LC compounds was used as a semiconductor layer to fabricate OTFT.

  • PDF

Synthesis and Characterization of Photopolymerizable Liquid Crystalline Compounds Having Two Reactive Sites

  • Jang, Ki-Suk;Kang, Suk-Hoon;Chang, Ji-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1651-1655
    • /
    • 2007
  • Rod-like polymerizable LC molecules having two different reactive groups, i.e. acryl and diacetylene groups were prepared. 4-Hydroxyphenyldiacetylenes were synthesized by the coupling reaction of 1-bromoalkynes with 4-ethynylphenol and then reacted with 4-(6-acryloyloxyalkyloxy)benzoic acid to give polymerizable LC molecules 4a-d. The mesomorphic properties of compounds 4a-d were investigated by differential scanning calorimetry, polarized optical microscopy and X-ray diffractometry. Compounds 4a-c exhibited smectic and nematic phases, but compound 4d having a longest alkyl tail among the series formed only a smectic phase. Photopolymerizability of acryl and diacetylene groups was investigated by IR spectroscopy. An anisotropic polymer film could be prepared by selective polymerization of acryl groups with 365 nm UV light in the presence of a photoinitiator (2,2-dimethoxy-2-phenylacetophenone). The subsequent reaction of diacetylene groups with 254 nm UV light disrupted the anisotropic structure, suggesting that these LC molecules could be used for imaging on the film.

Development of Highly Thermal Conductive Liquid Crystalline Epoxy Resins Bearing Phenylcyclohexyl Mesogenic Moieties (Phenylcyclohexyl mesogenic moieties를 함유한 고 열전도성 액정성 에폭시 수지의 개발)

  • Jeong, Iseul;Kim, Youngsu;Goh, Munju
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.350-355
    • /
    • 2017
  • The new liquid crystalline (LC) epoxy was designed by substituting the phenylcyclohexyl (PCH) mesogen moiety with an alkyl chain at the 2,5 position of the diglycidyl terephthalate. The mesomorphic properties were evaluated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). All LC epoxy derivatives exhibited an enantiotropic smectic phase upon heating and cooling process. The LC phase temperature range was widened by mixing the eutectic mixture of LC epoxies. Interestingly, the cured LC epoxy exhibited the highest thermal conductivity of $0.4W{\cdot}m^{-1}{\cdot}K^{-1}$. The novel LC epoxy with high thermal conductivity might be used as a composite material for electronic and display devices.

Liquid Crystalline Thermoset Films Based on Wholly Aromatic Copolymers (전방향족 공중합체의 열경화성 액정필름)

  • Moon, Hyun-Gon;Ahn, Yong-Ho;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.369-375
    • /
    • 2010
  • We used melt polymerization method to prepare a series of aromatic liquid crystals (LCs) based on aromatic ester and amide units with the reactive methyl-maleimide end group, and then the resulting thermally cross-linked LCs to produce LC thermoset films by means of solution casting and the followed heat treatment. The synthesized LCs and LCTs were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), thermomechanical analysis (TMA), X-ray diffractometry (XRD), and polarizing optical microscopy (POM) with a hot stage. All of the LCs prepared by melt polymerization method formed smectic mesophases. The thermal properties of the LC and LCT films were strongly affected by the mesogen units in the main chain structures. The thermal expansion coefficients of samples were in the range of 27.72~50.95 ppm/$^{\circ}C$.