• Title/Summary/Keyword: smearing estimation

Search Result 5, Processing Time 0.024 seconds

Estimation of Prediction Values in ARMA Models via the Transformation and Back-Transformation Method (변환-역변환을 통한 자기회귀이동평균모형에서의 예측값 추정)

  • Yeo, In-Kwon;Cho, Hye-Min
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.3
    • /
    • pp.537-546
    • /
    • 2008
  • One of main goals of time series analysis is to estimate prediction of future values. In this paper, we investigate the bias problem when the transformation and back- transformation approach is applied in ARMA models and introduce a modified smearing estimation to reduce the bias. An empirical study on the returns of KOSDAQ index via Yeo-Johnson transformation was executed to compare the performance of existing methods and proposed methods and showed that proposed approaches provide a bias-reduced estimation of the prediction value.

Influence of the Galactic Magnetic Field on the Distribution of Ultra-high-Energy Cosmic Rays

  • Kim, Jihyun;Kim, Hang Bae;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.38.3-38.3
    • /
    • 2015
  • Recently, the Pierre Auger Observatory (PAO), the largest ground-based project for detecting ultra-high-energy cosmic rays (UHECRs), published their 10-year data. We can access an unprecedented number of UHECR data observed by the project, which give us a possibility to get an accurate statistical test result. In this work, we investigate the influence of the galactic magnetic field (GMF) on the distribution of UHECRs by searching the correlation with the large-scale structure (LSS) of the universe. We simulate the mock UHECR events whose trajectories from the sources would be deflected by the Gaussian smearing angle which reflects the influence by the GMF. By the statistical test, we compare the correlation between the expected/observed distribution of UHECRs and the LSS of the universe in the regions of sky divided by the galactic latitude, varying the smearing angle. Here, we assume the deflections by the GMF are mainly dependent on the galactic latitude. Using the maximum likelihood estimation, we find the best-fit smearing angle in each region. If we get a trend that best-fit smearing angles differ from each region, the influence of GMF may be stronger than that of intergalactic magnetic fields (IGMF) because it is known that the distribution of IGMF follows the LSS of the universe. Also, we can estimate the strength of the GMF using the best-fit parameter by the maximum likelihood.

  • PDF

A Method to Suppress False Alarms of Sentinel-1 to Improve Ship Detection

  • Bae, Jeongju;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.535-544
    • /
    • 2020
  • In synthetic aperture radar (SAR) based ship detection application, false alarms frequently occur due to various noises caused by the radar imaging process. Among them, radio frequency interference (RFI) and azimuth smearing produce substantial false alarms; the latter also yields longer length estimation of ships than the true length. These two noises are prominent at cross-polarization and relatively weak at co-polarization. However, in general, the cross-polarization data are suitable for ship detection, because the radar backscatter from background sea surface is much less in comparison with the co-polarization backscatter, i.e., higher ship-sea image contrast. In order to improve the ship detection accuracy further, the RFI and azimuth smearing need to be mitigated. In the present letter, Sentinel-1 VV- and VH-polarization intensity data are used to show a novel technique of removing these noises. In this method, median image intensities of noises and background sea surface are calculated to yield arithmetic tendency. A band-math formula is then designed to replace the intensities of noise pixels in VH-polarization with adjusted VV-polarization intensity pixels that are less affected by the noises. To verify the proposed method, the adaptive threshold method (ATM) with a sliding window was used for ship detection, and the results showed that the 74.39% of RFI false alarms are removed and 92.27% false alarms of azimuth smearing are removed.

Deflection of Ultra-high Energy Cosmic Rays by the Galactic Magnetic Field

  • Kim, Jihyun;Kim, Hang Bae;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.73.1-73.1
    • /
    • 2014
  • We investigate the influence of the galactic magnetic field (GMF) on the arrival direction (AD) of ultra-high energy cosmic rays (UHECRs) by searching the correlation with the large-scale structure (LSS) of the universe. The deflection angle of UHECRs from sources by the GMF is reflected in a source model by introducing the Gaussian smearing angle as a free parameter. Assuming the deflections by the GMF are mainly dependent on the galactic latitude, b, we divide the regions of sky by b and analyze the correlation between the AD of UHECRs and the LSS of the universe in each region varying the smearing angle. We find the deflection is strongly dependent on the galactic latitude by the maximum likelihood estimation. Specifically, the best-fit smearing angles are $9^{\circ}$ and $84^{\circ}$ in the high galactic latitude (HGL), $-90^{\circ}$ < b < $-60^{\circ}$, and in the low galactic latitude (LGL), $-30^{\circ}$ < b < $30^{\circ}$, respectively. The strength of GMF becomes stronger from the HGL to the LGL. From the results, we can estimate the strength of GMF in each region. In the LGL, for example, if we assume UHECRs are protons, we have the order of $100{\mu}G$ GMF, which is much stronger than the expected value of conventional GMF model. However, if the primaries are heavy nuclei, which is consistent with the observational result of mass composition analysis, the order of GMF strength is a few ${\mu}G$. More data from the future experiments make it possible to study the GMF between the source of UHECRs and Earth more accurately.

  • PDF

Adaptive Channel Estimation and Decision Directed Noise Cancellation in the Frequency Domain Considering ICI of Digital on Channel Repeater in the T-DMB (T-DMB 동일 채널 중계기의 주파수 영역에서 ICI를 고려한 적응형 채널 추정과 결정지향 잡음 제거)

  • Kim, Gi-Young;Ryu, Sang-Burm;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.491-498
    • /
    • 2012
  • Recently, many papers have been proposed in order to improve the OFDM system performance in T-DMB DOCR (Digital On Channel Repeater), by using removing the feedback signal so that the transmitter power can be increased or by using the equalizer to remove ICI. Despite these efforts, however, signal quality at the receiving terminal has not been improved because of constellation smearing in T-DMB DOCR. In this paper, in order to suppress constellation smearing, we propose an effective equalizer algorithm that can improve system performance. We perform adaptive channel estimation and non-coherent decision directed noise cancellation method that can estimate the channel subsequently during data symbols period in the frequency domain. So we can obtain better quality of the signal at the receiving terminal. In order to secure QoS(Quality of Service) required in T-DMB handsets, we evaluate SNR and BER in T-DMB DOCR(Digital On Channel Repeater) and verified by simulation. In this simulation results, this system is satisfied the performance of BER=$10^{-5}$ at less than SNR=14 dB at the receiver after compensation of phase noise -18 dBc.