The absence of excitation measurements may pose a big challenge in the application of structural damage identification owing to the fact that substantial effort is needed to reconstruct or identify unknown input force. To address this issue, in this paper, an iterative strategy, a synergy of Tikhonov regularization method for force identification and modified Jaya algorithm (M-Jaya) for stiffness parameter identification, is developed for damage identification with partial output-only responses. On the one hand, the probabilistic clustering learning technique and nonlinear updating equation are introduced to improve the performance of standard Jaya algorithm. On the other hand, to deal with the difficulty of selection the appropriate regularization parameters in traditional Tikhonov regularization, an improved L-curve method based on B-spline interpolation function is presented. The applicability and effectiveness of the iterative strategy for simultaneous identification of structural damages and unknown input excitation is validated by numerical simulation on a 21-bar truss structure subjected to ambient excitation under noise free and contaminated measurements cases, as well as a series of experimental tests on a five-floor steel frame structure excited by sinusoidal force. The results from these numerical and experimental studies demonstrate that the proposed identification strategy can accurately and effectively identify damage locations and extents without the requirement of force measurements. The proposed M-Jaya algorithm provides more satisfactory performance than genetic algorithm, Gaussian bare-bones artificial bee colony and Jaya algorithm.
학령인구의 급격한 감소에 따른 학교의 소규모화가 가속화되고 있으며, 지역 및 학교 소멸에 대한 위기가 고조되고 있는 상황에서 소규모학교에서 미래교육 대응에 대한 필요성이 점점 증가하고 있다. 미래에는 유연한 교육과정, 디지털·인공지능 기반의 교실 수업 개선 등과 같은 교육과정을 통해서 학생들의 학교생활 만족도 향상, 창의성 및 인성 함양, 학업성취도 향상, 협력적 소통 역량 강화와 교사들의 교수학습 방법의 변화 등의 교육적 효과가 중요하다고 볼 수 있으며, 이를 위해서는 학교공간혁신 등 학교시설을 미래지향적인 공간으로 변화시킬 필요가 있다. 본 연구는 소규모 학교에서 미래형 교육체제가 무엇인지를 살펴보았고 학교공간 변화와 학교교육 상관관계, 스마트 환경 등 공간혁신의 교육적 효과와 지속가능성에 대한 인식을 중점적으로 분석하여 향후 소규모학교 공간혁신사업의 바람직한 추진 방향을 제시하였다.
Guolong Wang;Kelvin C.P. Wang;Allen A. Zhang;Guangwei Yang
Smart Structures and Systems
/
제32권3호
/
pp.135-151
/
2023
Using 3D asphalt pavement surface data, a deep and multiscale network named CrackNet-M is proposed in this paper for pixel-level crack detection for improvements in both accuracy and robustness. The CrackNet-M consists of four function-specific architectural modules: a central branch net (CBN), a crack map enhancement (CME) module, three pooling feature pyramids (PFP), and an output layer. The CBN maintains crack boundaries using no pooling reductions throughout all convolutional layers. The CME applies a pooling layer to enhance potential thin cracks for better continuity, consuming no data loss and attenuation when working jointly with CBN. The PFP modules implement direct down-sampling and pyramidal up-sampling with multiscale contexts specifically for the detection of thick cracks and exclusion of non-crack patterns. Finally, the output layer is optimized with a skip layer supervision technique proposed to further improve the network performance. Compared with traditional supervisions, the skip layer supervision brings about not only significant performance gains with respect to both accuracy and robustness but a faster convergence rate. CrackNet-M was trained on a total of 2,500 pixel-wise annotated 3D pavement images and finely scaled with another 200 images with full considerations on accuracy and efficiency. CrackNet-M can potentially achieve crack detection in real-time with a processing speed of 40 ms/image. The experimental results on 500 testing images demonstrate that CrackNet-M can effectively detect both thick and thin cracks from various pavement surfaces with a high level of Precision (94.28%), Recall (93.89%), and F-measure (94.04%). In addition, the proposed CrackNet-M compares favorably to other well-developed networks with respect to the detection of thin cracks as well as the removal of shoulder drop-offs.
연구목적: 본 논문은 백열전구를 이용하여 단락보호 전원공급 장치를 개발하고, 이를 학습 교구로 활용하는 연구에 관한 것이다. 전기 안전과 에너지 절약을 동시에 고려한 이 연구는 교육과 산업 분야에서 중요한 응용 가능성을 가지고 있다. 백열전구를 활용한 단락보호 전원공급 장치는 기존의 전원공급 장치와 비교하여 안전성과 효율성을 향상시키는데 도움이 되며, 학습 교구로 학습자들에게 전기 안전 교육을 제공함으로써 실생활에서의 전기 안전 지식을 습득하는데 기여한다. 연구방법: 백열전구를 사용하여 단락보호 전원공급 장치를 개발하고 개발된 장치의 성능 평가 및 안전성 확인을 통해 학습 교구로 활용할 수 있는 새로운 전원공급장치를 제작 한다. 결론:백열전구를 활용한 단락보호 전원공급 장치의 개발과 학습 교구로의 응용 가능성을 탐구한 연구이다. 이를 통해 전기 안전과 에너지 절약에 기여할 수 있는 혁신적인 솔루션을 제시하였으며, 교육 분야와 산업 분야에서의 응용 가능성을 열어놓았다. 이러한 연구는 전기 안전 및 에너지 관리 분야에서의 연구와 교육에 기여할 것으로 기대된다.
딥러닝의 발전은 의료 분야에서도 다양한 응용을 가능하게 하고 있으며 이러한 애플리케이션 중에 심박수 측정은 개인의 건강을 관리하기 위한 필수적인 아이템이라 할 수 있다. 광혈류 측정을 이용한 기존 방법의 경우 스마트워치 같은 장비의 착용이 필수적이다. 그러나 최근 딥러닝 기술의 발전은 비침습식으로 원격에서 사용자의 얼굴 이미지를 분석하여 심박수를 높은 성능으로 측정가능하게 한다. 본 연구에서는 모바일 환경에서 사용 가능한 경량화된 심박수 추정 방법론을 제안한다. 이 방법론은 2D 컨볼루션에 기반한 특화된 2채널 네트워크 구조를 사용하여, 혈류와 근육 수축으로 인한 얼굴의 미세한 움직임과 색상 변화를 고려한다. 제안하는 네트워크 구조는 이미지 특성을 분석하는 인코더와 혈류량 파동을 예측하는 회귀 레이어로 구성되어있다. 이러한 복합적인 특성을 동시에 분석함으로써, 제한된 컴퓨팅 리소스를 가진 환경에서도 심박수를 정확하게 추정할 수 있다. 이 연구의 접근 방식은 침습적인 기술 없이도 심박수를 효과적으로 모니터링 할 수 있는 새로운 경로를 제공할 것으로 예상한다.
Purpose - The purpose of this study is to identify the factors of shocking events in the career aspect experienced by Korean workers in the context of the Covid-19 pandemic, and to find out whether these career shocks affect individual perceptions of the importance of subjective career success. Design/methodology/approach - In the survey of 146 respondents, the career shock events experienced in the context of the Covid-19 pandemic were largely divided into three categories; 'work change', 'employment anxiety', and 'life anxiety'. For the subjective career success, seven dimensions - 'financial security', 'financial achievement', 'entrepreneurship', 'positive relationship', 'positive impact', 'learning and development', 'work-life balance' - were used. Findings - As a result, there was no difference in the perception of subjective career success due to the experience of 'work change' during the Covid-19 period. However, the respondents who experienced 'employment anxiety' came to recognize that 'financial security' and 'financial achievement' were more increasing in terms of the degree of difference of importance. And respondents who experienced 'lifetime anxiety' perceived that the degree of difference of importance was increasing in the six dimensions except for 'social influence'. Particularly, the increase in the importance of 'work-life balance' and 'positive relationship' was found to be the greatest among the career success dimensions. Research implications or Originality - Finally, it was concluded that changes in the external environment such as Covid-19 pandemic influence as a career shock and affect the level of importance in subjective career success perception. Based on the results, the theoretical implication on current career study and some practical implications for organizational career management were suggested.
최근 스마트항만을 구축하기 위해 ICT 기술이 적용된 물류 자동화, 항만 운영 자동화 등 다양한 기술이 개발 중이다. 하지만 항만 안전과 안전사고를 예방하기 위한 기술 개발은 부족한 상황이다. 이에 본 논문에서는 항만 내 컨테이너 적재 공간에서 발생할 수 있는 안전사고를 예방하기 위한 인공지능 기반 컨테이너 적재 안전관리 시스템을 제안한다. 이 시스템은 인공지능 기반 컨테이너 안전사고 위험도 분류 및 저장 기능과 실시간 안전사고 모니터링 기능으로 구성되어 있다. 이 시스템은 실시간으로 현장의 사고 위험도를 모니터링하며 이를 통해 컨테이너 붕괴사고를 예방할 수 있다. 제안된 시스템은 프로토타입으로 개발되어 직접 항만에 적용하여 시스템을 평가하였다.
Gabriel D. M. Manalu;Mulomba Mukendi Christian;Songhee You;Hyebong Choi
International journal of advanced smart convergence
/
제12권4호
/
pp.434-442
/
2023
The relationship between acute kidney injury (AKI) prediction and nephrotoxic drugs, or drugs that adversely affect kidney function, is one that has yet to be explored in the critical care setting. One contributing factor to this gap in research is the limited investigation of drug modalities in the intensive care unit (ICU) context, due to the challenges of processing prescription data into the corresponding drug representations and a lack in the comprehensive understanding of these drug representations. This study addresses this gap by proposing a novel approach that leverages patient prescription data as a modality to improve existing models for AKI prediction. We base our research on Electronic Health Record (EHR) data, extracting the relevant patient prescription information and converting it into the selected drug representation for our research, the extended-connectivity fingerprint (ECFP). Furthermore, we adopt a unique multimodal approach, developing machine learning models and 1D Convolutional Neural Networks (CNN) applied to clinical drug representations, establishing a procedure which has not been used by any previous studies predicting AKI. The findings showcase a notable improvement in AKI prediction through the integration of drug embeddings and other patient cohort features. By using drug features represented as ECFP molecular fingerprints along with common cohort features such as demographics and lab test values, we achieved a considerable improvement in model performance for the AKI prediction task over the baseline model which does not include the drug representations as features, indicating that our distinct approach enhances existing baseline techniques and highlights the relevance of drug data in predicting AKI in the ICU setting.
본 논문은 물고기 양식 전문가의 먹이 배급을 모방하는 신경망 모델인 PredFeed Net을 제안한다. PredFeed Net은 기존의 먹이 배급 자동화 시스템과 달리, 전문가의 먹이 배급 패턴을 학습하는 방식으로 먹이 배급량을 예측한다. 이는 실제 수조에서 환경에 따른 먹이 배급 변수를 바꾸며 실험할 필요 없이, 기존의 환경 데이터와 먹이 배급 전문가의 먹이 배급 기록만으로 학습이 가능하다는 이점이 있다. 학습이 완료된 PredFeed Net은 현재 환경이나 어류의 상태를 통해 다음 먹이 배급량을 예측한다. 먹이 배급량 예측은 먹이 배급 자동화에 필요한 요소이며, 먹이 배급 자동화는 스마트 양식업이나 아쿠아포닉스 시스템 같은 최신 양식어업에 발전에 기여한다.
농가를 운영함에 있어서 수확한 작물에 대한 품질을 평가하여 불량품을 분류하는 작업은 매우 중요하다. 그러나, 농가는 부족한 자본과 인력으로 인하여 품질평가에 소요되는 비용과 시간을 감당하는데 어려움이 있다. 이에 본 연구는 인공지능 기술인 딥 러닝 알고리즘을 이용하여 과일의 표피를 분석함으로써 불량을 검출하고자 한다. 과일을 촬영한 동영상 이미지에 대하여 영역기반 합성곱 신경망(Region Convolutional Neural Network)을 기반으로 한 YOLOv3 알고리즘을 적용하여 표피를 분석할 수 있는 모델을 개발하였다. 총 4개의 클래스를 정해서 학습을 진행하였고, 총 97,600번의 epoch을 통해서 우수한 성능의 불량검출 모델을 얻을 수 있었다. 본 연구에서 제안한 농작물 불량검출 모델은 데이터 수집, 분석된 데이터를 통한 품질평가, 그리고 불량검출에 이르는 과정의 자동화에 활용될 수 있다. 특히, 농작물들 중에서도 외상에 가장 취약한 복숭아를 대상으로 분석모델을 개발하였기 때문에, 다른 작물에도 적용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.