• 제목/요약/키워드: smart-learning

검색결과 1,825건 처리시간 0.031초

3차원 가상도시 모델에서 높이맵을 이용한 CNN 기반의 그림자 탐지방법 (CNN-based Shadow Detection Method using Height map in 3D Virtual City Model)

  • 윤희진;김주완;장인성;이병대;김남기
    • 인터넷정보학회논문지
    • /
    • 제20권6호
    • /
    • pp.55-63
    • /
    • 2019
  • 최근 교육, 제조, 건설 등 다양한 응용 분야에서 사실적인 가상환경을 표현하기 위하여 실세계 영상데이터를 활용하는 사례가 증가하고 있다. 특히, 스마트 시티 등 디지털 트윈에 대한 관심이 높아지면서, 항공 영상 등 실제 촬영한 영상을 이용하여 현실감 있는 3D 도시 모델을 구축하고 있다. 그러나, 촬영된 항공 영상에는 태양에 의한 그림자가 포함되어 있으며, 그림자가 포함된 3D 도시 모델은 사용자에게 정보를 왜곡시켜 표현하는 문제를 안고 있다. 그림자를 제거하기 위하여 그동안 많은 연구가 진행되었지만, 아직까지 해결하기 어려운 도전적인 문제로 인식되고 있다. 본 논문에서는 VWorld에서 제공하는 3차원 공간정보를 이용하여 건물의 높이 맵을 포함한 가상환경 데이터 셋을 구축하고, 높이맵과 딥러닝을 이용한 새로운 그림자 탐지 방법을 제안한다. 실험 결과에 의하면, 높이맵을 사용했을 때 기존 방법보다 그림자 탐지 에러율이 감소한 것을 확인할 수 있다.

중등 예비 과학교사들의 과학자 이미지 및 과학 관련 직업에 대한 인식 (Secondary Pre-service Science Teachers' Image of Scientists and Perception on the Science-Related Career)

  • 송영욱;최혁준
    • 한국과학교육학회지
    • /
    • 제38권5호
    • /
    • pp.753-763
    • /
    • 2018
  • 학습자들이 갖고 있는 과학자 이미지는 과학학습이나 과학 관련 직업 선택에 중요한 영향을 미친다. 과학자의 이미지는 주로 그리기 분석법을 활용하여 분석하였다. 그리기 분석법은 그리는 것에 제한이 있어 주로 과학자의 외형적인 이미지를 분석하였다. 과학교사들이 갖고 있는 과학자의 이미지 및 과학 관련 직업에 대한 인식은 학생들의 과학학습이나 과학 관련 직업 선택에 중요한 요인이다. 하지만 과학교사들을 대상으로 하는 연구는 부족한 편이다. 따라서 이 연구의 목적은 의미분석법을 통해서 과학자 이미지 측정도구를 개발하고 적용하여 측정 도구의 유용성을 알아보고, 중등 예비 과학교사의 과학자 이미지 및 과학 관련 직업에 대한 인식을 조사하여 교육적 시사점을 논의하는 데 있다. 연구 대상은 사범대학교에서 과학교육을 전공하는 2, 3학년 남학생 79명, 여학생 55명 총 134명이다. 연구결과 과학자 이미지 측정도구는 '능력', '평가', '활동', '정서'의 4개 요소, 24문항으로 구성되었다. 개발한 측정도구를 활용하여 중등 예비 과학 교사들에게 적용한 결과 과학자의 '평가', '능력', '활동' 요소에 대한 이미지는 높은 반면에 '정서'는 낮은 것으로 나타났다. 성별에 따른 통계적인 유의미한 차이는 없었다. 과학 관련 직업에 대해서는 '힘들다', '전문적이다', '똑똑해야한다', '복잡하다' 등으로 인식하는 것으로 나타났다. 특히, 남학생들은 '힘들고 어렵다'라고 인식하는 반면 여학생들은 '도전적이고 복잡하다'라고 인식하는 것으로 나타났다. 끝으로 과학자 이미지 측정도구 활용의 유용성 및 중등 예비 과학교사들의 과학자 이미지, 과학 관련 직업에 대한 교육적 시사점을 논의하였다.

PoseNet과 GRU를 이용한 Skeleton Keypoints 기반 낙상 감지 (Human Skeleton Keypoints based Fall Detection using GRU)

  • 강윤규;강희용;원달수
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.127-133
    • /
    • 2021
  • 낙상 판단을 위한 최근 발표되는 연구는 RNN(Recurrent Neural Network)을 이용한 낙상 동작 특징 분석과 동작 분류에 집중되어 있다. 웨어러블 센서를 기반으로 한 접근 방식은 높은 탐지율을 제공하나 사용자의 착용 불편으로 보편화 되지 못했고 최근 영상이나 이미지 기반에 딥러닝 접근방식을 이용한 낙상 감지방법이 소개 되었다. 본 논문은 2D RGB 저가 카메라에서 얻은 영상을 PoseNet을 이용해 추출한 인체 골격 키포인트(Keypoints) 정보로 머리와 어깨의 키포인트들의 위치와 위치 변화 가속도를 추정함으로써 낙상 판단의 정확도를 높이기 위한 감지 방법을 연구하였다. 특히 낙상 후 자세 특징 추출을 기반으로 Convolutional Neural Networks 중 Gated Recurrent Unit 기법을 사용하는 비전 기반 낙상 감지 솔루션을 제안한다. 인체 골격 특징 추출을 위해 공개 데이터 세트를 사용하였고, 동작분류 정확도를 높이는 기법으로 코, 좌우 눈 그리고 양쪽 귀를 포함하는 머리와 어깨를 하나의 세그먼트로 하는 특징 추출 방법을 적용해, 세그먼트의 하강 속도와 17개의 인체 골격 키포인트가 구성하는 바운딩 박스(Bounding Box)의 높이 대 폭의 비율을 융합하여 실험을 하였다. 제안한 방법은 기존 원시골격 데이터 사용 기법보다 낙상 탐지에 보다 효과적이며 실험환경에서 약 99.8%의 성공률을 보였다.

사례분석을 통한 객체검출 기술의 건설현장 적용 방안에 관한 연구 (A Study on the Application of Object Detection Method in Construction Site through Real Case Analysis)

  • 이기석;강성원;신윤석
    • 한국재난정보학회 논문집
    • /
    • 제18권2호
    • /
    • pp.269-279
    • /
    • 2022
  • 연구목적: 본 연구의 목적은 건설현장의 재해 예방을 위해 딥러닝기반의 개인보호구 검출 모델을 개발하고, 실제 건설현장에 적용하여 분석하는 것이다. 연구방법: 본 연구의 수행 방법은 실제 환경의 데이터를 구축하고, 개발된 개인보호구 검출 모델을 적용하였다. 개인보호구 검출 모델은 크게 근로자 검출 및 개인보호구 착용 분류 모델로 구성되어 있다. 근로자 검출 모델은 딥러닝 기반의 알고리즘을 실제 현장에서 획득한 데이터셋을 구축하여 학습 및 근로자를 검출하였고, 개인보호구 착용 분류 모델은 앞단에서 추출된 근로자 검출영역에서 학습된 개인보호구 검출 알고리즘을 적용하였다. 구축된 모델의 검증을 위해 건설현장 3곳에서 획득된 데이터를 통해 실험결과를 도출하였다. 연구결과: 데이터베이스 12,000장을 구축하여 정상검출 9,460장(78.8%), 오검출 1,468(12.2%), 미검출 1,072장(8.9%)으로 나타났으며 주요 원인은 영상에서의 객체 크기, 객체간 중첩(Occulusion), 객체 잘림, 그림자에 의한 오검출로 분류되었다. 결론: 개인보호구 검출모델은 현장 상황마다 다른 검출률을 확인할 수 있었고, 본 연구의 결과가 차후 현장적용을 위한 연구에 활용될 수 있을 것으로 여겨진다.

스포츠 경기에서 지능인식모델을 이용하기 위한 대상체 인식오류 보상방법에 관한 연구 (A Study on the Compensation Methods of Object Recognition Errors for Using Intelligent Recognition Model in Sports Games)

  • 한준수;김종원
    • 한국산학기술학회논문지
    • /
    • 제22권5호
    • /
    • pp.537-542
    • /
    • 2021
  • 본 논문은 인공지능 모델의 하나인 YOLO(You Only Look Once) 인식모델 기반의 이미지 내 객체인식을 위한 활용 환경에서 딥 러닝 네트워크를 통한 고속 이동 대상체 인식의 가능성 향상과 생활 속에서 쉽게 활용될 수 있도록 2차적인 정보의 가공을 통한 의미적 데이터 수집 방법을 연구하는데 그 목적이 있다. 인식모델에서 이동 대상체 인식오류는 카메라의 프레임 속도와 대상체의 이동속도 차이에서 발생하는 미인식과 대상체와 인접한 환경에서의 유사물체가 존재로 인한 오인식으로 확인되었으며 이를 보상하는 데이터 수집 방법을 제안했다. 실제 유사환경을 대표할 수 있는 스포츠(테니스 경기)를 대상으로 획득된 이미지에서 오류의 원인요소를 비전처리 기술을 적용하여 해당오류를 최소화하기 위한 방법과 처리구조를 연구하여 유효한 2차적인 데이터 수집의 효과성을 향상시켰다. 따라서 본 연구에서 제안된 데이터 수집 방법을 적용함으로써 일반인도 스마트폰 카메라의 간단한 촬영을 통해 스스로 건강 및 경기력 향상을 위한 스포츠 및 건강관련 산업에 적용될 수 있는 데이터의 수집 및 관리가 가능함을 보였다.

깊이 이미지를 이용한 타이어 표면 결함 검출 방법에 관한 연구 (A Study on Tire Surface Defect Detection Method Using Depth Image)

  • 김현석;고동범;이원곡;배유석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권5호
    • /
    • pp.211-220
    • /
    • 2022
  • 최근 4차 산업혁명으로 촉발된 스마트공장에 관한 연구가 활발히 진행되고 있다. 이에 따라 제조업에서는 강건한 성능의 딥러닝 기술을 바탕으로 생산성 향상과 품질 향상을 위해 다양한 연구를 진행 중이다. 본 논문은 타이어 제조공정의 육안검사 단계에서 타이어 표면 결함을 검출하는 방법에 관한 연구로서 3D 카메라를 통해 취득한 깊이 이미지를 이용한 타이어 표면 결함 검출 방법을 소개한다. 본 연구에서 다루는 타이어 표면 깊이 이미지는 타이어 표면의 얕은 깊이로 인해 발생되는 낮은 깊이 대비와 데이터 취득 환경으로 인해 기준 깊이 값의 차이가 발생하는 문제가 있다. 그리고 제조업의 특성상 검출 성능과 함께 실시간으로 처리될 수 있는 성능을 지닌 알고리즘이 요구된다. 따라서, 본 논문에서는 타이어 표면 결함 검출 알고리즘이 복잡한 알고리즘 파이프라인으로 구성되지 않도록 상대적으로 단순한 방법들을 통해 깊이 이미지를 정규화하는 방법을 연구하였으며 검출 성능과 속도를 모두 만족할 수 있는 딥러닝 방법인 YOLO V3를 이용하여 일반적인 정규화 방법과 본 논문에서 제안하는 정규화 방법의 비교 실험을 진행하였다. 실험의 결과로 본 논문에서 제안한 정규화 방법으로 mAP 0.5 기준 약 7% 성능이 향상된 것을 확인하였으며 본 논문에서 제시한 방법이 효과적임을 보였다.

Application of Artificial Intelligence Technology for Dam-Reservoir Operation in Long-Term Solution to Flood and Drought in Upper Mun River Basin

  • Areeya Rittima;JidapaKraisangka;WudhichartSawangphol;YutthanaPhankamolsil;Allan Sriratana Tabucanon;YutthanaTalaluxmana;VarawootVudhivanich
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.30-30
    • /
    • 2023
  • This study aims to establish the multi-reservoir operation system model in the Upper Mun River Basin which includes 5 main dams namely, Mun Bon (MB), Lamchae (LC), Lam Takhong (LTK), Lam Phraphoeng (LPP), and Lower Lam Chiengkrai (LLCK) Dams. The knowledge and AI technology were applied aiming to develop innovative prototype for SMART dam-reservoir operation in future. Two different sorts of reservoir operation system model namely, Fuzzy Logic (FL) and Constraint Programming (CP) as well as the development of rainfall and reservoir inflow prediction models using Machine Learning (ML) technique were made to help specify the right amount of daily reservoir releases for the Royal Irrigation Department (RID). The model could also provide the essential information particularly for the Office of National Water Resource of Thailand (ONWR) to determine the short-term and long-term water resource management plan and strengthen water security against flood and drought in this region. The simulated results of base case scenario for reservoir operation in the Upper Mun from 2008 to 2021 indicated that in the same circumstances, FL and CP models could specify the new release schemes to increase the reservoir water storages at the beginning of dry season of approximately 125.25 and 142.20 MCM per year. This means that supplying the agricultural water to farmers in dry season could be well managed. In other words, water scarcity problem could substantially be moderated at some extent in case of incapability to control the expansion of cultivated area size properly. Moreover, using AI technology to determine the new reservoir release schemes plays important role in reducing the actual volume of water shortfall in the basin although the drought situation at LTK and LLCK Dams were still existed in some periods of time. Meanwhile, considering the predicted inflow and hydrologic factors downstream of 5 main dams by FL model and minimizing the flood volume by CP model could ensure that flood risk was considerably minimized as a result of new release schemes.

  • PDF

항로표지 기반의 부착생물 정보 생성에 관한 연구 (A Study on the Generation of Fouling Organism Information Based Aids to Navigation)

  • 이신걸;송재욱;유윤재;정민
    • 해양환경안전학회지
    • /
    • 제29권5호
    • /
    • pp.456-461
    • /
    • 2023
  • 우리나라 해양생태계의 현황을 조사 및 분석하여 해양을 지속하게 이용할 수 있도록 하며 해양생태를 보전하고 관리할 수 있도록 국가 해양생태계 종합조사를 해양수산부의 위탁을 받아 해양환경공단에서 진행하고 있다. 국가 해양생태계 종합조사는 주요 조사정점을 설정하여 한반도 주변 해역의 생태계 변화를 조사하고 있지만, 정점이 연안을 중심으로 설정되어 근해역 등 조사범위 확대가 필요한 실정이다. 한편 해양수산부 항로표지과에서는 항로표지 인양점검 시 부착생물의 사진을 촬영하여 제공함으로써 국가 해양생태계 종합 조사를 지원하고 있지만, 해양환경공단과 협의하여 지정된 등부표에 한해서 부착생물 사진을 제공한다. 이에 항로표지를 국가 해양생태계 종합조사의 정점으로 활용할 수 있도록, 항로표지 및 등부표 인양점검 시 딥러닝 기반의 영상처리 알고리즘을 활용하여 부착생물의 정보를 생성하는 연구를 진행했다. 항로표지를 국가 해양생태계 종합조사의 정점으로 활용한다면 항로표지의 활용 가치를 제고하고 우리나라 근해의 이상 해황 및 생태계 변화를 분석할 수 있는 기초자료로 활용할 수 있다.

그래프 합성곱-신경망 구조 탐색 : 그래프 합성곱 신경망을 이용한 신경망 구조 탐색 (Graph Convolutional - Network Architecture Search : Network architecture search Using Graph Convolution Neural Networks)

  • 최수연;박종열
    • 문화기술의 융합
    • /
    • 제9권1호
    • /
    • pp.649-654
    • /
    • 2023
  • 본 논문은 그래프 합성곱 신경망을 이용한 신경망 구조 탐색 모델 설계를 제안한다. 딥 러닝은 블랙박스로 학습이 진행되는 특성으로 인해 설계한 모델이 최적화된 성능을 가지는 구조인지 검증하지 못하는 문제점이 존재한다. 신경망 구조 탐색 모델은 모델을 생성하는 순환 신경망과 생성된 네트워크인 합성곱 신경망으로 구성되어있다. 통상의 신경망 구조 탐색 모델은 순환신경망 계열을 사용하지만 우리는 본 논문에서 순환신경망 대신 그래프 합성곱 신경망을 사용하여 합성곱 신경망 모델을 생성하는 GC-NAS를 제안한다. 제안하는 GC-NAS는 Layer Extraction Block을 이용하여 Depth를 탐색하며 Hyper Parameter Prediction Block을 이용하여 Depth 정보를 기반으로 한 spatial, temporal 정보(hyper parameter)를 병렬적으로 탐색합니다. 따라서 Depth 정보를 반영하기 때문에 탐색 영역이 더 넓으며 Depth 정보와 병렬적 탐색을 진행함으로 모델의 탐색 영역의 목적성이 분명하기 때문에 GC-NAS대비 이론적 구조에 있어서 우위에 있다고 판단된다. GC-NAS는 그래프 합성곱 신경망 블록 및 그래프 생성 알고리즘을 통하여 기존 신경망 구조 탐색 모델에서 순환 신경망이 가지는 고차원 시간 축의 문제와 공간적 탐색의 범위 문제를 해결할 것으로 기대한다. 또한 우리는 본 논문이 제안하는 GC-NAS를 통하여 신경망 구조 탐색에 그래프 합성곱 신경망을 적용하는 연구가 활발히 이루어질 수 있는 계기가 될 수 있기를 기대한다.

음성인식과 자연어 처리 딥러닝을 통한 전자의무기록자동 생성 시스템 (Automatic Electronic Medical Record Generation System using Speech Recognition and Natural Language Processing Deep Learning)

  • 손현곤;류기환
    • 문화기술의 융합
    • /
    • 제9권3호
    • /
    • pp.731-736
    • /
    • 2023
  • 최근 의료 현장은 전자의무기록, 전자건강기록 등의 의료 기록을 전산화하여 저장하고 관리하는 시스템이 의무적으로 적용되거나 전체 의료 현장에 보급되어 환자 개개인의 과거 의료 기록을 추가적인 의료 행위에 활용하고 있다. 그러나 일반적인 의료 문진 및 상담 간 발생하는 의료진과 환자 간의 대화는 별도로 기록되거나 저장되지 않고 있어 추가적인 환자의 주요 정보는 효율적으로 활용되지 못하고 있다. 이에 따라, 의료 문진 현장에서 발생하는 의료진과 환자와의 대화를 저장하고 이를 텍스트 데이터로 변환하여 주요한 문진 내용만 자동으로 추출, 요약하여 정보화하는 음성인식과 자연어 처리 딥러닝을 통한 의료상담 요약문을 자동으로 생성하는 전자의무기록 시스템을 제안한다. 본 시스템은 의료 종사자와 환자의 의료 상담 내용의 인식과정을 거쳐서 텍스트 정보를 획득한다. 이렇게 획득된 텍스트를 복수의 문장으로 구분하고, 생성된 문장에 포함된 복수 키워드의 중요도를 산출한다. 산출된 중요도를 기반으로 복수의 문장에 순위를 매기고, 순위를 기반으로 문장들을 요약하여 최종 전자의무기록 데이터를 생성한다. 제안하는 시스템 성능은 정량적 분석을 통하여 우수함을 확인한다.