• 제목/요약/키워드: smart textile products

검색결과 41건 처리시간 0.02초

차세대 태양전지의 활용 동향 및 스마트 텍스타일 하이브리드 에너지 하베스팅 소자의 미래전망에 관한 연구 : 산업 소재와의 융합 중심 (A Study on the Application Trends of Next-Generation Solar Cells and the Future Prospects of Smart Textile Hybrid Energy Harvesting Devices : Focusing on Convergence with Industrial Materials)

  • 박붕익
    • 융합정보논문지
    • /
    • 제11권11호
    • /
    • pp.151-158
    • /
    • 2021
  • 본 논문에서는 차세대 태양전지로 대표되는 유기, 염료 감응형, 페로브스카이트 태양전지의 최신 연구 동향과 건축, 조형예술, 의류패션 등 분야를 막론한 다양한 산업의 소재로의 과제와 활용 가능성을 분석하였다. 더불어, 웨어러블 IoT 장치와 결합하여 자연 및 인공광과 우리 몸의 움직임에 따라 생성되는 크고 작은 진동 에너지를 전기에너지로 공급하는 역할을 하게 될 '스마트 텍스타일 하이브리드 에너지 하베스팅 소자'의 새로운 미래전망과 그 가능성을 제시하였다. 차세대 태양전지와 마찰·압전소자를 융합한 '하이브리드 텍스타일 에너지 하베스팅 디바이스'는 4차 산업혁명 시대의 웨어러블 IoT 기기에 소재 자체로 결합하여 새로운 '융합 일체형 스마트 의류'로 발전할 것이다. 이 연구가 제안한 차세대 나노기술과 소자가 에너지 하베스팅 기능을 갖는 스마트 섬유 소재 분야에 적용되고, 미래 의류 산업에 융합되어 의료, 헬스케어 등 다양한 분야에 AI 서비스 제공하는 창의적인 제품으로 진화하는 패러다임의 전환점이 되길 바란다.

MP3 스마트웨어 제품 상용화를 위한 디자인 프로토타입 개발 및 사용성 평가 연구 (Usability Evaluation and Development of Design Prototyping for MP3 Smart Clothing Product)

  • 채행석;홍지영;김준희;김진형;한광희;이주현
    • 감성과학
    • /
    • 제10권3호
    • /
    • pp.331-342
    • /
    • 2007
  • 본 연구에서는 MP3스마트웨어 상용화를 위한 디자인 프로토타입을 개발하였다. 본 연구에서 개발한 MP3 스마트웨어는 MP3 플레이어, 리모컨 모듈, 이어폰이 하나의 키트(One-kit) 형태로 되어 있으며 조립과 분리가 용이하다. 개발된 의류는 재킷타입의 MP3-YSJ(Yonsei Smart Jacket)와 사파리타입의 MP3-YSS(Yonsei Smart Safari)의 2종류의 MP3스마트웨어 였다. 2종류의 스마트웨어를 대상으로 한 두 차례의 사용성 평가가 각각 모듈별 평가와 항목별 평가로 진행되었다. 모듈별 평가는 외관, 소재, 음악컨트롤러, 이어폰/스피커, 커넥터였고 항목별 평가는 사회적 수용성,착용감,유용성,관리용이성,안전성을 평가하였다. MP3-YSJ 1.0과 MP3-YSS 1.0을 대상으로 한 1차 사용성 평가에서는 모듈별 평가는 전체적으로 긍정적인 결과를 보여주었다. 또한 항목별 평가에서는 MP3-YSJ 1.0와 MP3-YSS 1.0모두 다른 항목에 비해 사회적 수용성이 약간 낮게 평가되었고, 커넥터의 관리 용이성과 음악컨트롤러의 사회적 수용성이 낮게 나타났다. 2차 사용성 평가는 1차 사용성 평가 결과를 반영하여 개발된 제품을 대상으로 실시하였다. MP3-YSS 2.0은 음악 컨트롤러의 사회적 수용성과 관리용이성, 커넥터의 관리용이성이 개선이 필요한 항목으로 밝혀졌고, MP3-YSS 2.0의 경우에는 음악컨트롤러로의 사회적 수용성, 커넥터의 사회적 수용성, 소재의 관리용이성이 개선이 필요한 항목으로 나타났다. 특히 사용자는 키패드의 배치 때문에 사회적 수용성 측면에서 불편을 느꼈다. 음악컨트롤러의 사회적 수용성 문제를 보완하기 위해서는 음악컨트롤러의 키패드 인터페이스에 대해 보다 구체적인 연구가 필요하다.

  • PDF

지속가능 섬유 소재 추적성과 저탄소화 공정 (Low Carbonization Technology & Traceability for Sustainable Textile Materials)

  • 최민기;김원준;심명희
    • 한국의류산업학회지
    • /
    • 제25권6호
    • /
    • pp.673-689
    • /
    • 2023
  • To realize the traceability of sustainable textile products, this study presents a low-carbon process through energy savings in the textile material manufacturing process. Traceability is becoming an important element of Life Cycle Assessment (LCA), which confirms the eco-friendliness of textile products as well as supply chain information. Textile products with complex manufacturing processes require traceability of each step of the process to calculate carbon emissions and power usage. Additionally, an understanding of the characteristics of the product planning-manufacturing-distribution process and an overall understanding of carbon emissions sources are required. Energy use in the textile material manufacturing stage produces the largest amount of carbon dioxide, and the amount of carbon emitted from processes such as dyeing, weaving and knitting can be calculated. Energy saving methods include efficiency improvement and energy recycling, and carbon dioxide emissions can be reduced through waste heat recovery, sensor-based smart systems, and replacement of old facilities. In the dyeing process, which uses a considerable amount of heat energy, LNG, steam can be saved by using "heat exchangers," "condensate management traps," and "tenter exhaust fan controllers." In weaving and knitting processes, which use a considerable amount of electrical energy, about 10- 20% of energy can be saved by using old compressors and motors.

RFID 안테나용 전도성 프린팅을 위한 PET 직물의 최적 전처리 공정연구 및 성능평가 (A Study on Pre-treatment and Performance Evaluation for Printing RFID Antenna with Conductive Paste)

  • 홍진표;정찬도;윤석한;최상현
    • 한국염색가공학회지
    • /
    • 제25권4호
    • /
    • pp.287-291
    • /
    • 2013
  • Nowadays, terms such as 'Smart Textile', 'Intelligent Textile' and 'Wearable Computing' are commonly used in everyday contexts. And radio-frequency identification (RFID) is the use of a wireless non-contact system that uses radio-frequency electromagnetic fields to transfer data from a tag attached to an object, for the purposes of automatic identification and tracking. These products are required technologies which are textile treatments, printing, ink, etc. Durability of textile substrates is an essential marker for conductive ink printing process. Especially, heat stability is important, since conductive ink should be processable (annealing, curing) at temperatures below $150^{\circ}C$. This study was application of RFID on textiles. The textile pre-treatment processes should be carried out to use RFID antenna on textiles.

섬유기반의 웨어러블 디바이스용 유연소재 및 플랫폼 개발동향 분석 -국내외 특허분석을 중심으로- (Analysis on the development trend of flexible materials and platforms for wearable devices based on fiber - Based on domestic & international patent data -)

  • 한현정;장명진;이용성
    • 한국의상디자인학회지
    • /
    • 제22권1호
    • /
    • pp.33-44
    • /
    • 2020
  • The purpose of this study is to guide the research direction for securing the competitiveness of the textile industry by analyzing the trends of patent technology development for flexible materials and platform technologies of domestic and overseas textiles used for wearable devices. The study is based on patents from Korea (KIPO), USA (USPTO), Japan (JPO), Europe (EPO), PCT (WO), and China (SIPO), which were registered as of December 31, 2017. The analysis utilized 3,643 patents acquired from the WINTELIPS search DB. The technology classification system for patent analysis was divided into evangelist-based textile technology developments: human body (AA), fiber attachment patch development (AB), and service platform development (AC). The analysis findings are as follows: 1. The development of flexible materials and platform technologies for textile-based wearable devices has increased since 2000. In particular, China (SIPO) had the most patents. 2. In China, Japan, and Korea, most patent applicants are applied for by natives, but the US has a high proportion of foreigners applying for patents. 3. As for the amount of development of the evangelist-based textile technology (AA) was the most common with 1,203 (33%) cases. As a result of the above IP historical analysis, it can be seen that as a result of the global competition, domestic companies need to acquire IRP and standard technology, and promote commercialization by applying their products to smart wearables devices and other products.

휴대형 스마트 패션 디자인의 기능에 따른 유형 및 심미적 특성 (Types and Esthetic Characteristics by Function in Portable Smart Fashion Design)

  • 임시은;주희영
    • 한국의류학회지
    • /
    • 제47권1호
    • /
    • pp.1-16
    • /
    • 2023
  • The smart fashion industry is showing steady growth worldwide, which will create new value throughout the fashion industry and become an essential element for efficient lifestyles. This study attempted to examine the development trend of smart fashion products from a design perspective and present the direction of design as a fashion item incorporating smart technology from a functional perspective. For this purpose, the category of portable smart fashion and the characteristics of the research object were considered through current status survey and previous research review. Among smart fashion, accessories and clothing/fabric products that have been released thus far that apply portable fashion design principles are selected and its characteristics are analyzed. In addition, function keywords were extracted based on the product description provided by the manufacturer and the function-oriented types were classified to identify each type's design characteristics. Therefore, the area receiving the signal and the sensor size should be considered, as should the fashion accessory type that combines various materials and colors. The clothing/textile type requires a design that mainly focuses on functions related to bio-signal interactions.

반복신장 및 마모강도시험을 통한 봉제방법에 따른 스테인리스 스틸 전도사의 내구성 평가 (Durability Evaluation of Stainless Steel Conductive Yarn under Various Sewing Method by Repeated Strain and Abrasion Test)

  • 정임주;이선희
    • 한국의류학회지
    • /
    • 제42권3호
    • /
    • pp.474-485
    • /
    • 2018
  • Smart sensors and connected devices have changed the concept of garments along with IT technology convergent garments that transform the performance of basic functions. Various types of products have been researched and developed due to the increased interest in smart clothing; in addition, studies based on physical and mechanical properties have also been actively studied to improve accuracy and reliability. This study represents a basic study for the development of smart textiles based on motion recognition for the surfing practice of beginners interested in IT convergence type. A physical durability evaluation of conductive yarn according to sewing method was later carried out. This study is a conditional specimen sewn with cotton lower thread and 100mm pattern length based on the results of previous studies. The durability of the conductive yarn according to the sewing method was evaluated according to the sewing method. Durability was evaluated by two kinds of repeated strain and abrasion tests. The specimen with applied cotton in a lower thread zigzag pattern 2mm stitch size 100mm stitch length was shown to have the most suitable durability for smart textile.

캡스톤디자인 교육과정을 통한 텍스타일 상품개발 제안 및 수업만족도 고찰 (Study on Textile Product Development and Song HaYoung Class Satisfaction through Capstone Design Curriculum)

  • 송하영
    • 패션비즈니스
    • /
    • 제23권5호
    • /
    • pp.124-136
    • /
    • 2019
  • Capstone design is a creative and comprehensive educational program requiring practical adaptation skills for the industry. The purpose of this study was to analyze the results of design development, lectures and curriculum satisfaction for textile fashion products based on four years of capstone design curriculum from 2015 to 2018. The curriculum consists of 26 groups of 72 students and a total of 26 final results were obtained via industry-university cooperation. The materials for product design development included differentiated clothing, leisure goods, bags, dog goods, smart goods, interior goods and recycled products based on textiles. The degree of satisfaction with lectures involving the capstone design class was very high, with 4.2 out of 5.0 when the number of students was less than 10. However, when the number of students was 20 or higher and the number of students was large, the level of satisfaction was below 3.88. Therefore, the capstone design class comprising less than 10 students was better at individual teaching and teamwork. In terms of satisfaction with capstone design curriculum, the respondents indicated that the teaching method addressing the needs of industry and academia facilitated practical learning. It was very helpful in improving competency related to the design and development majors and future employment. The capstone design curriculum was effective in the training for practical design development and planning.

웨어러블 근전도 디바이스 결합형 스마트의류 개발 및 성능평가 (Development and Evaluation of Wearable Smart Clothing for Combined EMG Devices)

  • 이소정;김혜림;정원영
    • 한국의류산업학회지
    • /
    • 제25권2호
    • /
    • pp.210-220
    • /
    • 2023
  • Recently, smart wearable products, including electromyography (EMG) measurement devices and clothing, have been developed to monitor users' exercise levels, muscle activation, and muscle balance more effectively during fitness activities. However, technical and socioeconomic barriers, such as flexibility and durability, still pose challenges in terms of comfort, ease of wear, and wearability of smart clothing, which includes devices and circuits. To address these issues, this study developed a wearable EMG device integrated with clothing to collect valid EMG signals from desired muscles while maintaining comfort, functionality, and ease of wear. After deriving a combined structure that could stably position the wearable device within the clothing, a prototype was manufactured and evaluated for fit, compression, comfort, and exercise comfort test by ten participants (height = 176.2 cm, weight = 76.4 kg, chest circumference = 101.2 cm). The study found that the prototype had smaller circumferences around the chest, waist, and abdomen compared to commercial products, resulting in lower ratings for wearing comfort and ease of wear. However, the prototype received high ratings for fitting, pressure, and the exercise comfort test. Valid signals were obtained when the EMG device was combined to the prototype for the rectus femoris muscle, indicating stable positioning of the device during exercise.